

Design and Implementation of a Novel Approximate Parallel
Prefix Adders for Image Processing Applications

 PROJECT REPORT

Submitted in the fulfilment of the requirements for

the award of the degree of

Bachelor of Technology
in

Electronics and Communication Engineering

DANABONIA HEMANTH DANTLA SUDHAKAR REDDY

 [201FA05051] [201FA05093]

TUMMALA PRUDHVI GHANTASALA JASWANTHKUMAR

 [211LA05018] [211LA05025]

Under the Esteemed Guidance of

 Dr. M.Sarada

Professor

 Department of ECE

(ACCREDITED BY NAAC WITH “A+” GRADE)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
(ACCREDITED BY NBA)

VIGNAN’S FOUNDATION FOR SCIENCE, TECHNOLOGY AND RESEARCH

(Deemed to be University)

Vadlamudi, Guntur, Andhra Pradesh, India -522213

May 2024

ACKNOWLEDGEMENT

 The satisfaction that comes from successfully completing any task would be incomplete without
acknowledging the people who made it possible, whose ongoing guidance and encouragement have been
essential to the achievement.

 We are greatly indebted to Dr. M. Sarada, my revered guide and Professor in the Department of Electronics
and Communication Engineering, VFSTR (Deemed to be University), Vadlamudi, Guntur, for his valuable
guidance in the preparation of this project report. He has been a source of great inspiration and encouragement
to us. He has been kind enough to devote considerable amount of his valuable time in guiding us at every stage.
This is our debut, but we are sure that we are able to do many more such studies, under the lasting inspiration
and guidance given by respectable guide.

 We would also like to thank to Dr. T. Pitchaiah, Head of the Department, ECE for his valuable suggestion.

 We would like to specially thank, Dr. N. Usha Rani, Dean, School of Electrical, Electronics and
Communication Engineering for her help and support during the project work.

 We thank our project coordinators Dr. Satyajeet Sahoo, Dr. Arka Bhattacharyya, Mr. Abhishek
Kumar and Mr. M. Vamsi Krishna for continuous support and suggestions in scheduling project reviews
and verification of the report. Also, thank to supporting staff of ECE Department for their technical support
for timely completion of project.

 We would like to express our gratitude to Dr. P. Nagabhusan, Vice-Chancellor, VFSTR (Deemed to be
University) for providing us the greatest opportunity to have a great exposure and to carry out the project.

 Finally, we would like to thank our parents and friends for the moral support throughout the project work.

 Name of the Student

 DANABOINA HEMANTH (201FA05051)

 DANTLA SUDHAKAR REDDY (201FA05093)

 TUMMALA PRUDHVI (211LA05018)

 GHANTASALA JASWANTH KUMAR (211LA05025)

Abstract

Approximate parallel prefix adders (AxPPA) are a type of circuit that can perform addition

operations on binary numbers with high speed and low power consumption with less area. These

circuits provide approximate results, which means that they sacrifice accuracy for efficiency. This

trade off makes them ideal for use in applications where speed is more important than precision. In

recent years, there has been a growing interest in the development of these circuits, as they have the

potential to revolutionize the field of digital signal processing. In this project, we will provide an

overview of approximate parallel prefix adders and methods for reducing the error rate of AxPPA by

modification of the architectures for the following PPA adders: approximate Brent–Kung

(AxBKPPA), approximate Kogge–Stone (AxKSPPA), Ladner-Fischer (AxLFPPA), Knowles

(AxKWPPA), Han Carlson (AxHCPPA) and Sklansky (AxSKPPA). The proposing adders aims at

reduce the area, power dissipation, delay and error rate. These will be designed, simulated and

implemented with Verilog HDL (IEEE 1364-2005), Xilinx Vivado software tool (Xilinx

Vivado2018.1) and Digilent Artix7 FPGA board (XC7A35TICSG324-1L) respectively. The adders

are verified by implementing them in image processing applications.

TABLE OF CONTENTS

Declaration

Acknowledgment

Abstract

Major Design Experience Information

List of Figures

List of Tables

List of Acronyms and Abbreviations

CHAPTER 1: INTRODUCTION Page No

1.1 Introduction 1

1.2 Motivation 1

1.3 Objectives 2

1.4 Tools and Standards 2

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction 3

2.2 Existing Approximate PPA 4

CHAPTER 3: PROPOSED APPROXIMATE PPA

3.1 Introduction 7

3.2 Proposed Approximate Brent Kung PPA 8

3.3 Proposed Approximate Kogge Stone PPA 8

3.4 Proposed Approximate Sklansky PPA 9

3.5 Proposed Approximate Ladner Fischer PPA 10

3.6 Proposed Approximate Knowles PPA 10

3.7 Proposed Approximate Han Carlson PPA 11

CHAPTER 4: PROPOSED HYBRID APPROXIMATE PPA

4.1 Introduction 12

4.2 Proposed Hybrid Approximate PPA1 13

4.3 Proposed Hybrid Approximate PPA2 13

4.4 Proposed Hybrid Approximate PPA3 14

4.5 Proposed Hybrid Approximate PPA4 15

4.6 Proposed Hybrid Approximate PPA5 16

4.7 Proposed Hybrid Approximate PPA6 16

4.8 Proposed Hybrid Approximate PPA7 17

4.9 Proposed Hybrid Approximate PPA8 18

4.10 Proposed Hybrid Approximate PPA9 19

4.11 Proposed Hybrid Approximate PPA10 20

CHAPTER 5: PROPOSED HYBRID APPROXIMATE PPA

5.1 Introduction 21

5.2 Proposed Hybrid Approximate PPA11 21

5.3 Proposed Hybrid Approximate PPA12 22

5.4 Proposed Hybrid Approximate PPA13 23

5.5 Proposed Hybrid Approximate PPA14 23

5.6 Proposed Hybrid Approximate PPA15 24

5.7 Proposed Hybrid Approximate PPA16 25

5.8 Proposed Hybrid Approximate PPA17 26

5.9 Proposed Hybrid Approximate PPA18 26

5.10 Proposed Hybrid Approximate PPA19 27

5.11 Proposed Hybrid Approximate PPA20 28

CHAPTER 6: IMAGE PROCESSING APPLICATIONS

6.1 Introduction 30

6.1.1 Image Enhancement Processing Application using FPGA In Loop 30

6.1.1.1 Experimental Results for Image Enhancement using FPGA In Loop 31

6.1.2 Image Contrast Processing Application using FPGA In Loop 31

6.1.2.1 Experimental Results for Image Contrast using FPGA In Loop 32

CHAPTER 7: SIMULATION RESULTS

7.1 Introduction 33

7.2 Simulation and Synthesis Results 33

 7.2.1 Literature Review Results 33

7.2.2 Xilinx Vivado Simulation and Synthesis Results 38

7.3 Image Processing for Literature Review Results 40

7.4 Image Processing Results using System Generator 43

CHAPTER 8: VERIFICATION RESULTS

8.1 Introduction 51

8.2 Image Processing using FPGA In Loop 51

CHAPTER 9: CONCLUSION AND FUTURE SCOPE

9.1 Conclusion 53

9.2 Future Scope 53

9.3 References 54

LIST OF FIGURES

 FIGURE NO FIGURE NAME PAGENO

2.2.1 Exact 16-Bit Brent Kung Adder 3

2.2.2 Exact 16-Bit Kogge Stone Adder 4

2.2.3 Exact 16-Bit Ladner Fischer Adder 4

2.2.4 Exact 16-Bit Sklansky Adder 5

2.2.5 Exact 16-Bit Knowles Adder 5

2.2.6 Exact 16-Bit Han Carlson Adder 6

3.1 Block diagram of Proposed Approximate PPA 7

3.2 Architecture of Proposed Approximate Brent Kung PPA 8

3.3 Architecture of Proposed Approximate Kogge Stone PPA 9

3.4 Architecture of Proposed Approximate Sklansky PPA 9

3.5 Architecture of Proposed Approximate Ladner Fischer PPA 10

3.6 Architecture of Proposed Approximate Knowles PPA 10

3.7 Architecture of Proposed Approximate Han Carlson PPA 11

4.1.1 Block diagram of Proposed Hybrid Approximate PPA 12

4.2 Proposed Hybrid Approximate PPA1 13

4.3 Proposed Hybrid Approximate PPA2 14

4.4 Proposed Hybrid Approximate PPA3 15

4.5 Proposed Hybrid Approximate PPA4 15

4.6 Proposed Hybrid Approximate PPA5 16

4.7 Proposed Hybrid Approximate PPA6 17

4.8 Proposed Hybrid Approximate PPA7 18

4.9 Proposed Hybrid Approximate PPA8 19

4.10 Proposed Hybrid Approximate PPA9 20

4.11 Proposed Hybrid Approximate PPA10 20

5.1.1 Block diagram of Hybrid Approximate PPA 21

5.2 Proposed Hybrid Approximate PPA11 22

5.3 Proposed Hybrid Approximate PPA12 23

5.4 Proposed Hybrid Approximate PPA13 23

5.5 Proposed Hybrid Approximate PPA14 24

5.6 Proposed Hybrid Approximate PPA15 25

5.7 Proposed Hybrid Approximate PPA16 25

5.8 Proposed Hybrid Approximate PPA17 26

5.9 Proposed Hybrid Approximate PPA18 27

5.10 Proposed Hybrid Approximate PPA19 28

5.11 Proposed Hybrid Approximate PPA20 28

6.1.1 Image Enhancement Processing Application Using FPGA in the Loop 30

6.1.1.2 Input Image 31

6.1.1.3 Output Image 31

6.1.1.4 FPGA Setup 31

6.1.2 Image Constrat Processing Application Using FPGA in the Loop 31

6.1.2.2 Input Image 32

6.1.2.3 Output Image 32

6.1.2.4 Input Image 32

6.1.2.5 Output Image 32

7.2.1.1 Exact SK 16-Bit Adder Simulation 33

7.2.1.2 AxSK 16-Bit Adder Simulation 33

7.2.1.3 Proposed AxSK 16-Bit Adder simulation 34

7.2.1.5 Exact 32-bit LF Adder simulation 34

7.2.1.6 Existing 32-bit AxLF Adder simulation 34

7.2.1.7 Proposed32-bit AxLF Adder simulation 35

7.2.1.10 Simulation and synthesis of Han-Carlson adder using Model Sim 35

7.2.1.12 Simulation Result of Exact BK 16-Bit Adder 36

7.2.1.13 Simulation Result of AxBK 16-Bit Adder 37

7.2.1.14 Simulation Result of Proposed AxBK 16-Bit Adder 37

7.2.1.16 Simulation result of 32-bit Exact KS Adder 37

7.2.1.17 Simulation result of 32-bit AxKS Adder 38

7.2.1.18 Simulation result of 32-bit Proposed AxKS Adder 38

7.3.1 Input Image1 40

7.3.2 Input Image2 40

7.3.3 Exact 16-bit BKPPA 40

7.3.4 Existing 16-bit AxBK PPA 41

7.3.5 Proposed 16-bit AxBKPPA 41

7.3.7 Exact 32-bit KSPPA 42

7.3.8 Ax 32-bit KSPPA 42

7.3.9 Proposed 32-bit KSPPA 42

7.3.11 Exact 32-bit LFPPA 42

7.3.12 Ax32-bit LFPPA 42

7.3.13 Proposed 32-bit LFPPA 42

7.3.15 Exact 16-bit SKPPA 43

7.3.16 AxSK 16-bit PPA 43

7.3.17 Proposed 16-bitSKPPA 43

7.4.1 Design flow of hardware implementation of image processing 44

7.4.2 Image Pre-processing unit 44

7.4.2.1 Image Post-processing unit 45

7.4.3 Input Image 1 45

7.4.4 Input Image2 45

7.4.5 Proposed AxBKPPA 45

7.4.6 Proposed AxKSPPA 45

7.4.7 Proposed AxSKPPA 45

7.4.8 Proposed AxLFPPA 45

7.4.9 Proposed AxKWPPA 45

7.4.10 Proposed AxHCPPA 45

7.4.11 Proposed HAxPPA1 45

7.4.12 Proposed HAxPPA2 46

7.4.13 Proposed HAxPPA3 46

7.4.14 Proposed HAxPPA4 46

7.4.15 Proposed HAxPPA5 46

7.4.16 Proposed HAxPPA6 46

7.4.17 Proposed HAxPPA7 46

7.4.18 Proposed HAxPPA8 46

7.4.19 Proposed HAxPPA9 46

7.4.20 Proposed HAxPPA10 46

7.4.21 Proposed HAxPPA11 46

7.4.22 Proposed HAxPPA12 46

7.4.23 Proposed HAxPPA13 46

7.4.24 Proposed HAxPPA14 47

7.4.25 Proposed HAxPPA15 47

7.4.26 Proposed HAxPPA16 47

7.4.27 Proposed HAxPPA17 47

7.4.28 Proposed HAxPPA18 47

7.4.29 Proposed HAxPPA19 47

7.4.30 Proposed HAxPPA20 47

8.2 Image Processing Using FPGA In Loop 51

8.2.1 Input Image 1 52

8.2.2 Input Image 2 52

8.2.3 Output Image 52

LIST OF TABLES

TABLE NO TABLE NAME PAGE NO

7.2.1.4 Area and Delay Analysis of the Proposed and Existing AxSK Adder 34

7.2.1.8 Area and Time Analysis of the Existing and Proposed AxLF adders 35

7.2.1.9 Comparison of Knowles and Modified Knowles adder 35

7.2.1.11 Comparison of CLA Kogge stone and Han Carlson 36

7.2.1.15 Area and Delay Analysis of the Proposed and Existing AxBK Adder 37

7.2.1.19 Analysis of Area and Delay of existing and Proposed AxKS Adder 38

7.2.2.1 Performance Analysis of Proposed Approximate PPA 38

7.2.2.2 Performance Analysis of Proposed Hybrid Approximate PPA 39

7.2.2.3 Performance Analysis of Proposed Hybrid Approximate PPA 40

7.3.6 Calculation of PSNR (dB) for BK PPA 41

7.3.10 Calculation of PSNR (dB) for KS PPA 41

7.3.14 Calculation of PSNR (dB) for LF PPA 42

7.3.18 Calculation of PSNR (dB) for SK PPA 43

7.4.31 Calculation of Proposed Approximate PPA PSNR Values 48

7.4.32 Calculation of PSNR for Proposed Hybrid Approximate PPA 49

7.4.33 Calculation of PSNR for Proposed Hybrid Approximate PPA 50

LIST OF ACRONYMS AND ABBREVIATIONS

Ax Approximate

AC Approximate Computing

AxPPA Approximate Parallel Prefix Adders

AxBK Approximate Brent Kung

AxKS Approximate Kogge Stone

AxSK Approximate Sklansky

AxLF Approximate Ladner Fischer

AxHC Approximate Han Carlson

BK Brent Kung

FIL FPGA IN LOOP

FPGA Field Programmable Gate Array

HC Han Carlson

KS Kogge Stone

KW Knowles

LF Ladner Fishner

PPA Parallel Prefix Adder

1

CHAPTER-1

INTRODUCTION

1.1 INTRODUCTION

Parallel Prefix Adders in VLSI are a class of digital circuits and systems, adders play a vital

role in performing fast arithmetic operations is increasing day by day. They are highly efficient

provide performance in terms of speed, area and power consumption. they are widely used in

VLSI circuits such as microprocessors, digital signal processors etc and some of the design

methodologies used for building these adders are the brent kung, kogge stone, sklansky, Ladner

Fisher, Knowles, and Han Carlson adder. Approximate parallel prefix adders instead of exact

parallel prefix adders for certain applications where exactness is not critical and some amount of

error can be tolerated. These approximate adders are designed to provide approximate output

with lower area and power consumption and higher speed compared to exact parallel prefix

adders.

Approximate computing is a computing paradigm that trades off accuracy for efficiency.

Instead of always providing precise results, approximate computing techniques aim to deliver

results that are "approximately correct" within certain acceptable bounds. This approach can be

particularly useful in scenarios where exact accuracy is not critical or where there are resource

constraints such as time, energy, or hardware limitations. Some common techniques used in

approximate computing include Reduced Precision Arithmetic, Algorithmic Approximations,

Selective Precision, Early Termination, Speculative Execution, Error-Tolerant Data Structures.

It is particularly relevant in domains such as signal processing, machine learning, multimedia

applications, and scientific computing, where small errors in computation can often be tolerated

without significantly impacting the overall result or user experience. However, it's essential to

carefully analyze the impact of approximation on the specific application to ensure that the

introduced errors are within acceptable bounds.

1.2 MOTIVATION

 Approximate computing (AC) is a method that trades off accuracy for better performance and

energy efficiency. It takes advantage of the fact that many applications are resilient to imprecision

and soft errors. Some advantages of approximate computing include, Improved network performance,

Energy efficiency, Image processing etc. AC can be an innovative method for image processing, with

the advantages of lower power and high accuracy. Addition is one of the important and basic

requirements in AC with more speed. To get more speed Parallel prefix adders are used. So, this

project aims to design and implement Approximate Parallel prefix adders (AxPPA).

2

1.3 OBJECTIVES

 To design and implement:

 AxPPA with less Area

 AxPPA with more speed

 AxPPA with less error rate

 Implementing Image processing application with more PSNR

1.4 TOOLS AND STANDARDS

 Tools and standards are:

 IEEE 1364-2005 is the standard for Verilog Hardware Description Language (HDL)

used in digital design.

 Xilinx Vivado 2018.1 is a software tool suite for FPGA design and implementation,

developed by Xilinx.

 IEEE 1149.1-1990 Joint Test Action Group(JTAG)

 IEEE 1801-2009/2018, also known as the Unified Power Format (UPF), is a standard

for specifying power intent in electronic design.

 IEEE 1588 is the standard for Precision Time Protocol (PTP), used for synchronization

of clocks in a computer network.

 Xilinx Artix7 FPGA board (XC7A35TICSG324-1L) is a System-on-Chip device that

integrates FPGA fabric with ARM Cortex-A9 processors, providing a versatile

platform for embedded systems development.

3

CHAPTER-2

LITERATURE REVIEW

2.1 INTRODUTION

In the realm of Approximate VLSI, parallel prefix adders play a significant role in processing

chips as they are utilized to add two large binary values and perform the addition operation. The

primary objectives for this type of adder are to minimize the area, improve speed, and reduce the error

rate. In order to tackle the challenges faced in the Exact PPA domain, enhancements have been made

to enhance efficiency and decrease delay. The introduction of the current PPA adder aimed to achieve

these goals by minimizing the area, reducing delay, and error rates. However, to further optimize the

delay and error rate, the development of the Approximate PPA took place. This innovative solution

aims to deliver superior results at the output by further reducing delay while maintaining a minimal

error rate. The computation results, which are nearly accurate, are evaluated as approximate, thus

confirming their suitability for practical use in Image Processing Applications. Approximate

computing, also known as AxC, is a novel design approach that aims to enhance efficiency throughout

the computing stack by leveraging the natural fault tolerance of various applications. AxC introduces

accuracy, which refers to the quality of outcomes, as a fresh explicit aspect for balancing design

enhancements. This strategy can significantly reduce the VLSI circuit area and energy usage for

computations.

2.2 EXISTING APPROXIMATE PPA

 Fig. 2.2.1 Exact 16-Bit Brent Kung Adder

The parallel arithmetic operations performed by the Brent-Kung adder are implemented using

a tree structure. Richard Peirce Brent and Hsiang Te Kung first proposed it in 1982. This is a great

choice for low-power designs as it is designed to reduce chip space and facilitate manufacturing. The

gray and black cells make up the Brent-Kung adder, with each black cell having two AND gates and

one OR gate. Compared to other adder topologies, it has greater regularity, which reduces cable

4

clutter and improves performance. Figure 2.2.1 shows the structure of the 16-bit Brent Kung adder.

Calculating the carry from the least significant bit adder (LSB) to the most significant bit adder (MSB)

determines the critical route in the BK adder, which is why one tries to shorten the critical path so

that the storage unit can reach the MSB.

 Fig. 2.2.2 Exact 16-Bit Kogge Stone Adder

 Kogge Stone Adder is a parallel-prefix shape carry look-ahead adder. It was once developed

via Peter M. Kogge and Harold S. Stone which they posted in 1973. KS adder is a fast adder layout

as it generates carry signal in low delay and has the satisfactory overall performance in VLSI

implementations. Kogge-Stone adder is broadly used in excessive overall performance 32-bit, 64-bit,

as it reduces the crucial direction to great extent.Figure 2.2.2 represents the 16-bit Kogge Stone adder

structure, which has fanout of 2 at each stage. There are a less number of stages with high complexity

logical operational architecture. KS Adder is broadly used in excessive overall performance addition

devices with area efficiency and less time delay.

 Fig. 2.2.3 Exact 16-Bit Ladner Fischer Adder

In PPA, the carries are generated in parallel and different types of tree structures differ as to

how they provide cells in the intermediate stages i.e. mainly in the prefix stage. The cells are a group

5

of logic gates that tend to take over the area and can optimize the increase in area by reducing

operators in stages; as a result, the number of cells is reduced. One of the advantages of the

approximate adders or multipliers is that, it can be used to produce inaccurate result which will not

affect the computation. Using this advantage for our proposed work, the cells are limited in the prefix

stage of the adder. In place of a single black cell involving group propagate/ generate for the last

stage, and can make use of the same black cell and given that the result remains unaffected which is

depicted in Fig. 2.2.3 The decision of increasing from the last stage to two or more depends upon the

bit size of the architecture. Here in this design, each black cell at the top is used to compute the last

two stages. change can be implemented in the design by altering the VHDL module for simulation.

Fig.2.2.4 Exact 16-Bit Sklansky Adder Structure

A Parallel prefix adder that can add binary integers quickly is the Sklansky adder Fig.2.2.4.

There are several levels of half adders and complete adders among the input bits. The create and

propagate bits for every pair of bits are calculated at each level. The carry bits for the following level

are then determined using these bits. The sum bits and the carry-out bit are produced at the last level.

Because of its logarithmic depth, the Sklansky adder can add n bits in log2 n steps.

Fig.2.2.5 Exact 16-Bit Knowles Adder Structure

6

The Fig.2.2.5 Exact 16-Bit Knowles Adder Structure parallel-prefix tree adders are more favourable

in terms of speed due to thecomplexity O(log2N) delay (Kogge stone) through the carry path

compared to that of other adders. This is similar to kogge stone adder except in Last stage wiring

complexity is reduced to half. But it doubles the Loading. Kogge-Stone adder design is the most

straightforward, and also it has one of the shortest critical paths of all tree adders. The drawback with

the Kogge-Stone adder implementation is the large area consumption and the more complex routing

(Fan-Out) of interconnects. Black boxes are BC and grey cells are GC that cannot be removed,

because they are required for carry propagation and other calculations.

 Fig. 2.2.6 Exact 16-Bit Han-Carlson Adder Structure

Han-Carlson adder contains a good trade-off between fan out, number of logic levels and number of

black cells. Because of this, Han-Carlson adder can achieve equal to speed execution admiration to

Kogge-Stone adder, at lower power utilization and territory. In this manner it is fascinating to execute

a speculative Han-Carlson adder. Moved by these reasons, we have generated a Han-Carlson

speculative prefix-processing stage by removing the final rows of the Kogge-Stone part of the adder.

As an example, Figure 2.2.6 show the Han-Carlson adder in which the two Brent-Kung rows at the

initial and toward the end of the graph are unaltered, while the last Kogge Stone row is pruned. This

yields a speculative stage with K=8=n/2.in general, one has K ==n/2p. where P is the quantity of

pruned levels; the number of levels of the speculative Han-Carlson stage lessens from 1+ log(n) to1+

log(k) (assuming that is a power of two).

7

CHAPTER 3

PROPOSED APPROXIMATE PPA

3.1 INTRODUCTION

Proposed Approximate parallel prefix adders represent a fascinating intersection of two

important concepts in digital circuit design: parallel prefix adders and approximate computing.

Traditional parallel prefix adders, as mentioned earlier, excel in high-speed arithmetic applications

by breaking down addition into parallel stages. On the other hand, approximate computing techniques

aim to trade off accuracy for gains in power, area, or speed. These adders are designed to produce

approximate results with acceptable accuracy, often sacrificing precision in favor of efficiency. The

motivation behind Proposed approximate parallel prefix adders lies in applications where perfect

accuracy isn't crucial or where the computational cost of achieving perfect accuracy outweighs the

benefits. Examples include multimedia processing, machine learning inference, and certain types of

signal processing. Designing proposed approximate parallel prefix adders involves careful

consideration of trade-offs between accuracy, speed, power consumption, and area utilization.

Fig. 3.1 Block diagram of Proposed Approximate PPA

The Proposed approximate PPA, shown in Figure 3.1, is a 32-bit adder that is divided into

two phases. It comprises of one distinct Exact PPA and one Approximate Structure. The approximate

8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces approximate sum output

vales from S0 to S7 using the logical OR operation in the final stage and carry output C7. This carry

output C7 is used as carry input for the next stage of exact 24-bit adder. The Exact 24-bit adder

structure, taking bits from 8 to 31 of inputs A and B, generates a sum output with Exact values from

S8 to S31 and carry out of Cout.

8

3.2 PROPOSED APPROXIMATE BRENT KUNG PPA

The Proposed Hybrid Approximate Brent Kung PPA, shown in Figure 3.2, is a 32-bit adder

that is divided into two phases. It comprises of one distinct Exact Brent Kung PPA and one

Approximate Structure. The approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs

A and B, produces approximate sum output values from S0 to S7 using the logical OR operation in the

final stage and carry output C7. This carry output C7 is used as carry input for the next stage of exact

Brent Kung 24-bits PPA. The Exact Brent Kung 24-bit PPA structure, taking bits from 8 to 31 of

inputs A and B, generates a sum output with Exact values from S8 to S31 and carry out of Cout.

Fig. 3.2 Architecture of Proposed Approximate Brent Kung PPA

3.3 PROPOSED APPROXIMATE KOGGE STONE PPA

The Proposed Hybrid Approximate Kogge Stone PPA, shown in Figure 3.3, is a 32-bit adder

that is divided into two phases. It comprises of one distinct Exact Kogge Stone PPA and one

Approximate Structure. The approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs

A and B, produces approximate sum output values from S0 to S7 using the logical OR operation in the

final stage and carry output C7. This carry output C7 is used as carry input for the next stage of Exact

Kogge Stone 24-bits PPA. The Exact Kogge Stone 24-bits PPA structure, taking bits from 8 to 31 of

inputs A and B, generates a sum output with Exact values from S8 to S31 and carry out of Cout. The

Proposed Approximate Kogge Stone PPA is widely utilized in high-performance computing systems,

particularly in 32-bit and 64-bit architectures, as it significantly reduces the critical path.

9

 Fig. 3.3 Architecture of Proposed Approximate Kogge Stone PPA

3.4 PROPOSED APPROXIMATE SKLANSKY PPA

The Proposed Hybrid Approximate Sklansky PPA, shown in Figure 3.4, is a 32-bit adder that

is divided into two phases. It comprises of one distinct Exact Sklansky PPA and one Approximate

Structure. The approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B,

produces approximate sum output values from S0 to S7 using the logical OR operation in the final

stage and carry output C7. This carry output C7 is used as carry input for the next stage of Exact

Sklansky 24-bits PPA. The Exact Sklansky 24-bits PPA structure, taking bits from 8 to 31 of inputs

A and B, generates a sum output with Exact values from S8 to S31 and carry out of Cout.

 Fig. 3.4 Architecture of Proposed Approximate Sklansky PPA

10

3.5 PROPOSED APPROXIMATE LADNER-FISCHER PPA

The Proposed Hybrid Approximate Ladner-Fischer PPA, shown in Figure 3.5, is a 32-bit

adder that is divided into two phases. It comprises of one distinct Exact Ladner-Fischer PPA and one

Approximate Structure. The approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs

A and B, produces approximate sum output values from S0 to S7 using the logical OR operation in the

final stage and carry output C7. This carry output C7 is used as carry input for the next stage of Exact

Ladner-Fischer 24-bits PPA. The Exact Ladner-Fischer 24-bits PPA structure, taking bits from 8 to

31 of inputs A and B, generates a sum output with Exact values from S8 to S31 and carry out of Cout.

Fig. 3.5 Architecture of Proposed Approximate Ladner-Fischer PPA

3.6 PROPOSED APPROXIMATE KNOWLES PPA

Fig. 3.6 Architecture of Proposed Approximate Knowles PPA

11

The Proposed Hybrid Approximate Knowles PPA, shown in Figure 3.5, is a 32-bit adder that

is divided into two phases. It comprises of one distinct Exact Knowles PPA and one Approximate

Structure. The approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B,

produces approximate sum output values from S0 to S7 using the logical OR operation in the final

stage and carry output C7. This carry output C7 is used as carry input for the next stage of Exact 24-

bits PPA. The Exact Knowles 24-bits PPA structure, taking bits from 8 to 31 of inputs A and B,

generates a sum output with Exact values from S8 to S31 and carry out of Cout.

3.7 PROPOSED APPROXIMATE HAN CARLSON PPA

The Proposed Hybrid Approximate Han Carlson PPA, shown in Figure 3.5, is a 32-bit adder

that is divided into two phases. It comprises of one distinct Exact Han Carlson PPA and one

Approximate Structure. The approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs

A and B, produces approximate sum output values from S0 to S7 using the logical OR operation in the

final stage and carry output C7. This carry output C7 is used as carry input for the next stage of Exact

24-bits PPA. The Exact Han Carlson 24-bits PPA structure, taking bits from 8 to 31 of inputs A and

B, generates a sum output with Exact values from S8 to S31 and carry out of Cout.

Fig. 3.7 Architecture of Proposed Approximate Han Carlson PPA

12

CHAPTER 4

PROPOSED HYBRID APPROXIMATE PPA

4.1 INTRODUCTION

A hybrid approximate parallel prefix adder likely refers to a specialized type of circuit used

in digital electronics for fast addition of binary numbers. A parallel prefix adder is a type of adder

circuit that computes the sum of multiple binary numbers in parallel. It's commonly used in digital

systems where high-speed arithmetic operations are required. Approximate computing is a paradigm

where computations are performed with acceptable levels of accuracy rather than exact precision.

This can lead to faster and more energy-efficient computations at the expense of some loss in

accuracy. Combining these two concepts, a hybrid approximate parallel prefix adder likely refers to

a specialized adder circuit that incorporates approximate computing techniques within a parallel

prefix adder architecture. This could involve using approximate adder cells or approximation

techniques within the parallel prefix adder to achieve faster computation speeds or reduce energy

consumption, with a trade-off in accuracy. Such a hybrid approach aims to leverage the benefits of

both parallelism for speed and approximate computing for efficiency, making it suitable for

applications where strict precision is not necessary, such as in machine learning accelerators or

multimedia processing units.

Fig. 4.1.1 Block diagram of Proposed Hybrid Approximate PPA

The Fig. 4.1.1 Block diagram of Proposed Hybrid Approximate PPA represents a hierarchical

adder circuit that integrates both exact and approximate adders to achieve a balance between precision

and efficiency. The circuit begins with exact adder topology1, which takes two 12-bit inputs (B31A31

and B20A20) and produces two 12-bit sum outputs (S31 and S20) along with a carry output (C19). This

carry output (C19) is then fed into the next stage, exact adder topology2, which also processes two 12-

bit inputs (B19A19 and B8A8) along with the carry input from the previous stage, generating two more

13

12-bit sum outputs (S19 and S8) and another carry output (C7). Finally, the approximate adder topology

takes over, handling two 8-bit inputs (B7A7 and B0A0) and the carry input from the second exact adder,

and producing two 8-bit sum outputs (S7 and S0) along with the final carry output (Cout). This design

leverages the precision of exact adders for the initial 24 bits and uses an approximate adder for the

last 8 bits, potentially reducing power consumption and area at the expense of some accuracy.

4.2 PROPOSED HYBRID APPROXIMATE PPA1

The Proposed Hybrid approximate PPA1, shown in Figure 4.2, is a 32-bit adder that is divided

into three phases. It comprises of two distinct Exact PPAs and one Approximate Structure. The

approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces

approximate sum output values from S0 to S7 using the logical OR operation in the final stage and

carry output C7. This carry output C7 is used as carry input for the next stage of exact Sklansky 12-

bit adder. The Sklansky 12-bit adder structure, taking bits from 8 to 19 of inputs A and B, generates

a sum output with Exact values from S8 to S19 and carry out of C19. This carry out C19 is taken as

input for the next exact Ladner Fischer 12-bit Adder. The Ladner Fischer 12-bit adder structure,

taking bits from 20 to 31 of inputs A and B, generates a sum output with exact values from S20 to S31

and carry out of Cout at the end. This Proposed hybrid Approximate PPA1 offers a reduction in area

and less delay compared to other Proposed adders.

Fig. 4.2 Proposed Hybrid Approximate PPA1

4.3 PROPOSED HYBRID APPROXIMATE PPA2

The Proposed Hybrid approximate PPA2, shown in Figure 4.3, is a 32-bit adder that is divided into

three phases. It comprises of two distinct Exact PPAs and one Approximate Structure. The

14

approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces

approximate sum output values from S0 to S7 using the logical OR operation in the final stage and

carry output C7. This carry output C7 is used as carry input for the next stage of exact Ladner Fischer

12-bit adder. The Ladner Fischer 12-bit adder structure, taking bits from 8 to 19 of inputs A and B,

generates a sum output with Exact values from S8 to S19 and carry out of C19. This carry out C19 is

taken as input for the next exact Sklansky 12-bit Adder. The Sklansky 12-bit adder structure, taking

bits from 20 to 31 of inputs A and B, generates a sum output with exact values from S20 to S31 and

carry out of Cout at the end. This Proposed hybrid Approximate PPA2 offers a reduction in area and

less delay compared to other Proposed adders.

 Fig. 4.3 Proposed Hybrid Approximate PPA2

4.4 PROPOSED HYBRID APPROXIMATE PPA3

The Proposed Hybrid approximate PPA3, shown in Figure 4.4, is a 32-bit adder that is divided

into three phases. It comprises of two distinct Exact PPAs and one Approximate Structure. The

approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces

approximate sum output values from S0 to S7 using the logical OR operation in the final stage and

carry output C7. This carry output C7 is used as carry input for the next stage of exact Knowles 12-bit

adder. The Knowles 12-bit adder structure, taking bits from 8 to 19 of inputs A and B, generates a

sum output with Exact values from S8 to S19 and carry out of C19. This carry out C19 is taken as input

for the next exact Sklansky 12-bit Adder. The Sklansky 12-bit adder structure, taking bits from 20 to

31 of inputs A and B, generates a sum output with exact values from S20 to S31 and carry out of Cout

15

at the end. This Proposed hybrid Approximate PPA3 offers a reduction in area and less delay

compared to other Proposed adders.

Fig. 4.4 Proposed Hybrid Approximate PPA3

4.5 PROPOSED HYBRID APPROXIMATE PPA4

Fig. 4.5 Proposed Hybrid Approximate PPA4

The Proposed Hybrid approximate PPA4, shown in Figure 4.5, is a 32-bit adder that is divided

into three phases. It comprises of two distinct Exact PPAs and one Approximate Structure. The

approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces

approximate sum output values from S0 to S7 using the logical OR operation in the final stage and

carry output C7. This carry output C7 is used as carry input for the next stage of exact Sklansky 12-

bit adder. The Sklansky 12-bit adder structure, taking bits from 8 to 19 of inputs A and B, generates

16

a sum output with Exact values from S8 to S19 and carry out of C19. This carry out C19 is taken as

input for the next exact Knowles 12-bit Adder. The Knowles 12-bit adder structure, taking bits from

20 to 31 of inputs A and B, generates a sum output with exact values from S20 to S31 and carry out of

Cout at the end. This Proposed hybrid Approximate PPA4 offers a reduction in area and less delay

compared to other Proposed adders.

4.6 PROPOSED HYBRID APPROXIMATE PPA5

The Proposed Hybrid approximate PPA5, shown in Figure 4.6, is a 32-bit adder that is divided

into three phases. It comprises of two distinct Exact PPAs and one Approximate Structure. The

approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces

approximate sum output values from S0 to S7 using the logical OR operation in the final stage and

carry output C7. This carry output C7 is used as carry input for the next stage of exact Knowles 12-bit

adder. The Knowles 12-bit adder structure, taking bits from 8 to 19 of inputs A and B, generates a

sum output with Exact values from S8 to S19 and carry out of C19. This carry out C19 is taken as input

for the next exact Ladner Fischer 12-bit Adder. The Ladner Fischer 12-bit adder structure, taking bits

from 20 to 31 of inputs A and B, generates a sum output with exact values from S20 to S31 and carry

out of Cout at the end. This Proposed hybrid Approximate PPA5 offers a reduction in area and less

delay compared to other Proposed adders.

 Fig. 4.6 Proposed Hybrid Approximate PPA5

4.7 PROPOSED HYBRID APPROXIMATE PPA6

The Proposed Hybrid approximate PPA6, shown in Figure 4.7, is a 32-bit adder that is divided

into three phases. It comprises of two distinct Exact PPAs and one Approximate Structure. The

17

approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces

approximate sum output values from S0 to S7 using the logical OR operation in the final stage and

carry output C7. This carry output C7 is used as carry input for the next stage of exact Ladner Fischer

12-bit adder. The Ladner Fischer 12-bit adder structure, taking bits from 8 to 19 of inputs A and B,

generates a sum output with Exact values from S8 to S19 and carry out of C19. This carry out C19 is

taken as input for the next exact Knowles 12-bit Adder. The Knowles 12-bit adder structure, taking

bits from 20 to 31 of inputs A and B, generates a sum output with exact values from S20 to S31 and

carry out of Cout at the end. This Proposed hybrid Approximate PPA6 offers a reduction in and less

delay compared to other Proposed adders.

 Fig. 4.7 Proposed Hybrid Approximate PPA6

4.8 PROPOSED HYBRID APPROXIMATE PPA7

The Proposed Hybrid approximate PPA7, shown in Figure 4.8, is a 32-bit adder that is divided

into three phases. It comprises of two distinct Exact PPAs and one Approximate Structure. The

approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces

approximate sum output values from S0 to S7 using the logical OR operation in the final stage and

carry output C7. This carry output C7 is used as carry input for the next stage of exact Brent Kung 12-

bit adder. The Brent Kung 12-bit adder structure, taking bits from 8 to 19 of inputs A and B, generates

a sum output with Exact values from S8 to S19 and carry out of C19. This carry out C19 is taken as input

for the next exact Ladner Fischer 12-bit Adder. The Ladner Fischer 12-bit adder structure, taking bits

from 20 to 31 of inputs A and B, generates a sum output with exact values from S20 to S31 and carry

out of Cout at the end. This Proposed hybrid Approximate PPA7 offers a reduction in and less delay

compared to other Proposed adders.

18

Fig. 4.7 Proposed Hybrid Approximate PPA6

4.8 PROPOSED HYBRID APPROXIMATE PPA7

Fig. 4.8 Proposed Hybrid Approximate PPA7

The Proposed Hybrid approximate PPA7, shown in Figure 4.8, is a 32-bit adder that is divided
into three phases. It comprises of two distinct Exact PPAs and one Approximate Structure. The
approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces
approximate sum output values from S0 to S7 using the logical OR operation in the final stage and
carry output C7. This carry output C7 is used as carry input for the next stage of exact Brent Kung 12-
bit adder. The Brent Kung 12-bit adder structure, taking bits from 8 to 19 of inputs A and B, generates
a sum output with Exact values from S8 to S19 and carry out of C19. This carry out C19 is taken as
input for the next exact Ladner Fischer 12-bit Adder. The Ladner Fischer 12-bit adder structure,
taking bits from 20 to 31 of inputs A and B, generates a sum output with exact values from S20 to S31
and carry out of Cout at the end.

19

4.9 PROPOSED HYBRID APPROXIMATE PPA8

The Proposed Hybrid approximate PPA8, shown in Figure 4.9, is a 32-bit adder that is divided

into three phases. It comprises of two distinct Exact PPAs and one Approximate Structure. The

approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces

approximate sum output values from S0 to S7 using the logical OR operation in the final stage and

carry output C7. This carry output C7 is used as carry input for the next stage of exact Brent Kung 12-

bit adder. The Brent Kung 12-bit adder structure, taking bits from 8 to 19 of inputs A and B, generates

a sum output with Exact values from S8 to S19 and carry out of C19. This carry out C19 is taken as input

for the next exact Sklansky 12-bit Adder. The Sklansky 12-bit adder structure, taking bits from 20 to

31 of inputs A and B, generates a sum output with exact values from S20 to S31 and carry out of Cout

at the end.

 Fig. 4.9 Proposed Hybrid Approximate PPA8

4.10 PROPOSED HYBRID APPROXIMATE PPA9

The Proposed Hybrid approximate PPA9, shown in Figure 4.10, is a 32-bit adder that is

divided into three phases. It comprises of two distinct Exact PPAs and one Approximate Structure.

The approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces

approximate sum output values from S0 to S7 using the logical OR operation in the final stage and

carry output C7. This carry output C7 is used as carry input for the next stage of exact Kogge stone

12-bit adder. The Kogge stone 12-bit adder structure, taking bits from 8 to 19 of inputs A and B,

generates a sum output with Exact values from S8 to S19 and carry out of C19. This carry out C19 is

taken as input for the next exact Ladner Fischer 12-bit Adder. The Ladner Fischer 12-bit adder

structure, taking bits from 20 to 31 of inputs A and B, generates a sum output with exact values from

S20 to S31 and carry out of Cout at the end.

20

Fig. 4.10 Proposed Hybrid Approximate PPA9

4.11 PROPOSED HYBRID APPROXIMATE PPA10

The Proposed Hybrid approximate PPA10, shown in Figure 4.11, is a 32-bit adder that is

divided into three phases. It comprises of two distinct Exact PPAs and one Approximate Structure.

The approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces

approximate sum output values from S0 to S7 using the logical OR operation in the final stage and

carry output C7. This carry output C7 is used as carry input for the next stage of exact Kogge stone

12-bit adder. The Kogge stone 12-bit adder structure, taking bits from 8 to 19 of inputs A and B,

generates a sum output with Exact values from S8 to S19 and carry out of C19. This carry out C19 is

taken as input for the next exact Sklansky 12-bit Adder. The Sklansky 12-bit adder structure, taking

bits from 20 to 31 of inputs A and B, generates a sum output with exact values from S20 to S31 and

carry out of Cout at the end.

Fig. 4.11 Proposed Hybrid Approximate PPA10

21

CHAPTER 5

PROPOSED HYBRID APPROXIMATE PPA

5.1 INTRODUCTION

The Proposed Hybrid approximate PPA, shown in Figure.5.1, is a 32-bit adder that is divided

into Four phases. It comprises of three distinct Exact PPAs and one Approximate Structure. The

approximate 8-bit structure, which takes bits from 0 to 7, of inputs A and B, produces approximate

sum output values from S0 to S7 and carry output C7. This carry output C7 is used as carry input for

the next stage of exact 8-bit adder. The Exact 8-bit adder topology1 structure, taking bits from 8 to

15 of inputs A and B, generates a sum output with Exact values from S8 to S15 and carry out of C15.

This carry out C15 is taken as input for the next exact 8-bit Adder. The exact 8-bit adder topology2

structure, taking bits from 16 to 23 of inputs A and B, generates a sum output with exact values from

S16 to S23 and carry out 23. The exact 8-bit adder topology 3 structure, taking bits from 24 to 31 of

inputs A and B, generates a sum output with Exact values from S24 to S31 and carry out of Cout.

 Fig. 5.1.1 Block diagram of Hybrid Approximate PPA

5.2 PROPOSED HYBRID APPROXIMATE PPA11

The Proposed Hybrid approximate PPA11, shown in Figure 5.2, is a 32-bit adder that is divided into

Four phases. It comprises of three distinct Exact PPAs and one Approximate Structure. The

approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces

approximate sum output vales from S0 to S7 using the logical OR operation in the final stage and carry

output C7. This carry output C7 is used as carry input for the next stage of exact Ladner-Fischer 8-bit

adder. The Ladner-Fischer 8-bit adder structure, taking bits from 8 to 15 of inputs A and B, generates

a sum output with Exact values from S8 to S15 and carry out of C15. This carry out C15 is taken as input

for the next exact Knowles 8-bit Adder. The Knowles 8-bit adder structure, taking bits from 16 to 23

of inputs A and B, generates a sum output with exact values from S16 to S23 and carry out 23. The

22

Sklansky 8-bit adder structure, taking bits from 24 to 31 of inputs A and B, generates a sum output

with Exact values from S24 to S31 and carry out of Cout.

Fig. 5.2 Proposed Hybrid Approximate PPA11

 5.3 PROPOSED HYBRID APPROXIMATE PPA12

Fig. 5.3 Proposed Hybrid Approximate PPA12

 The Proposed Hybrid approximate PPA12, shown in Figure 5.3, is a 32-bit adder that is

divided into Four phases. It comprises of three distinct Exact PPAs and one Approximate Structure.

The approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces

approximate sum output vales from S0 to S7 using the logical OR operation in the final stage and carry

output C7. This carry output C7 is used as carry input for the next stage of exact Knowles 8-bit adder.

23

The Knowles 8-bit adder structure, taking bits from 8 to 15 of inputs A and B, generates a sum output

with Exact values from S8 to S15 and carry out of C15. This carry out C15 is taken as input for the next

exact Ladner-Fischer 8-bit Adder. The Ladner-Fischer 8-bit adder structure, taking bits from 16 to 23

of inputs A and B, generates a sum output with exact values from S16 to S23 and carry out 23. The

Sklansky 8-bit adder structure, taking bits from 24 to 31 of inputs A and B, generates a sum output

with Exact values from S24 to S31 and carry out of Cout.

5.4 PROPOSED HYBRID APPROXIMATE PPA13

Fig. 5.4 Proposed Hybrid Approximate PPA13

The Proposed Hybrid approximate PPA13, shown in Figure 5.4, is a 32-bit adder that is

divided into Four phases. It comprises of three distinct Exact PPAs and one Approximate Structure.

The approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces

approximate sum output vales from S0 to S7 using the logical OR operation in the final stage and carry

output C7. This carry output C7 is used as carry input for the next stage of exact Ladner-Fischer 8-bit

adder. The Ladner-Fischer 8-bit adder structure, taking bits from 8 to 15 of inputs A and B, generates

a sum output with Exact values from S8 to S15 and carry out of C15. This carry out C15 is taken as

input for the next exact Sklansky 8-bit Adder. The Sklansky 8-bit adder structure, taking bits from 16

to 23 of inputs A and B, generates a sum output with exact values from S16 to S23 and carry out 23.

The Knowles 8-bit adder structure, taking bits from 24 to 31 of inputs A and B, generates a sum

output with Exact values from S24 to S31 and carry out of Cout.

5.5 PROPOSED HYBRID APPROXIMATE PPA14

24

The Proposed Hybrid approximate PPA14, shown in Figure 5.5, is a 32-bit adder that is

divided into Four phases. It comprises of three distinct Exact PPAs and one Approximate Structure.

The approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces

approximate sum output vales from S0 to S7 using the logical OR operation in the final stage and carry

output C7. This carry output C7 is used as carry input for the next stage of exact Sklansky 8-bit adder.

The Sklansky 8-bit adder structure, taking bits from 8 to 15 of inputs A and B, generates a sum output

with Exact values from S8 to S15 and carry out of C15. This carry out C15 is taken as input for the next

exact Ladner Fishner 8-bit Adder. The Ladner Fishner 8-bit adder structure, taking bits from 16 to 23

of inputs A and B, generates a sum output with exact values from S16 to S23 and carry out 23. The

Knowles 8-bit adder structure, taking bits from 24 to 31 of inputs A and B, generates a sum output

with Exact values from S24 to S31 and carry out of Cout.

Fig. 5.5 Proposed Hybrid Approximate PPA14

5.6 PROPOSED HYBRID APPROXIMATE PPA15

The Proposed Hybrid approximate PPA15, shown in Figure 5.6, is a 32-bit adder that is

divided into Four phases. It comprises of three distinct Exact PPAs and one Approximate Structure.

The approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces

approximate sum output vales from S0 to S7 using the logical OR operation in the final stage and carry

output C7. This carry output C7 is used as carry input for the next stage of exact Sklansky 8-bit adder.

The Sklansky 8-bit adder structure, taking bits from 8 to 15 of inputs A and B, generates a sum output

with Exact values from S8 to S15 and carry out of C15. This carry out C15 is taken as input for the next

exact Knowles 8-bit Adder. The Knowles 8-bit adder structure, taking bits from 16 to 23 of inputs A

and B, generates a sum output with exact values from S16 to S23 and carry out 23. The Ladner-Fischer

25

8-bit adder structure, taking bits from 24 to 31 of inputs A and B, generates a sum output with Exact

values from S24 to S31 and carry out of Cout.

Fig. 5.6 Proposed Hybrid Approximate PPA15

5.7 PROPOSED HYBRID APPROXIMATE PPA16

Fig. 5.7 Proposed Hybrid Approximate PPA16

 The Proposed Hybrid approximate PPA16, shown in Figure 5.7, is a 32-bit adder that is

divided into Four phases. It comprises of three distinct Exact PPAs and one Approximate Structure.

The approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces

approximate sum output vales from S0 to S7 using the logical OR operation in the final stage and carry

26

output C7. This carry output C7 is used as carry input for the next stage of exact Ladner-Fischer 8-bit

adder. The Ladner-Fischer 8-bit adder structure, taking bits from 8 to 15 of inputs A and B, generates

a sum output with Exact values from S8 to S15 and carry out of C15. This carry out C15 is taken as

input for the next exact Sklansky 8-bit Adder. The Sklansky 8-bit adder structure, taking bits from 16

to 23 of inputs A and B, generates a sum output with exact values from S16 to S23 and carry out 23.

The Knowles 8-bit adder structure, taking bits from 24 to 31 of inputs A and B, generates a sum

output with Exact values from S24 to S31 and carry out of Cout.

5.8 PROPOSED HYBRID APPROXIMATE PPA17

Fig. 5.8 Proposed Hybrid Approximate PPA17

The Proposed Hybrid approximate PPA17, shown in Figure 5.8, is a 32-bit adder that is

divided into Four phases. It comprises of three distinct Exact PPAs and one Approximate Structure.

The approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces

approximate sum output vales from S0 to S7 using the logical OR operation in the final stage and carry

output C7. This carry output C7 is used as carry input for the next stage of exact Han-Carlson 8-bit

adder. The Han-Carlson 8-bit adder structure, taking bits from 8 to 15 of inputs A and B, generates a

sum output with Exact values from S8 to S15 and carry out of C15. This carry out C15 is taken as input

for the next exact Knowles 8-bit Adder. The Knowles 8-bit adder structure, taking bits from 16 to 23

of inputs A and B, generates a sum output with exact values from S16 to S23 and carry out 23. The

Sklansky 8-bit adder structure, taking bits from 24 to 31 of inputs A and B, generates a sum output

with Exact values from S24 to S31 and carry out of Cout.

5.9 PROPOSED HYBRID APPROXIMATE PPA18

27

The Proposed Hybrid approximate PPA18, shown in Figure-5.1, is a 32-bit adder that is

divided into Four phases. It comprises of three distinct Exact PPAs and one Approximate Structure.

The approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces

approximate sum output vales from S0 to S7 using the logical OR operation in the final stage and carry

output C7. This carry output C7 is used as carry input for the next stage of exact Kogge-Stone 8-bit

adder. The Kogge-Stone 8-bit adder structure, taking bits from 8 to 15 of inputs A and B, generates

a sum output with Exact values from S8 to S15 and carry out of C15. This carry out C15 is taken as

input for the next exact Ladner Fishner 8-bit Adder. The Ladner Fishner 8-bit adder structure, taking

bits from 16 to 23 of inputs A and B, generates a sum output with exact values from S16 to S23 and

carry out 23. The Sklansky 8-bit adder structure, taking bits from 24 to 31 of inputs A and B, generates

a sum output with Exact values from S24 to S31 and carry out of Cout.

Fig. 5.9 Proposed Hybrid Approximate PPA18

5.10 PROPOSED HYBRID APPROXIMATE PPA19

The Proposed Hybrid approximate PPA19, shown in Figure 5.10, is a 32-bit adder that is

divided into Four phases. It comprises of three distinct Exact PPAs and one Approximate Structure.

The approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces

approximate sum output vales from S0 to S7 using the logical OR operation in the final stage and carry

output C7. This carry output C7 is used as carry input for the next stage of exact Brent-Kung 8-bit

adder. The Brent-Kung 8-bit adder structure, taking bits from 8 to 15 of inputs A and B, generates a

sum output with Exact values from S8 to S15 and carry out of C15. This carry out C15 is taken as input

for the next exact Ladner-Fischer 8-bit Adder. The Ladner-Fischer 8-bit adder structure, taking bits

from 16 to 23 of inputs A and B, generates a sum output with exact values from S16 to S23 and carry

28

out C23. The Sklansky 8-bit adder structure, taking bits from 24 to 31 of inputs A and B, generates a

sum output with Exact values from S24 to S31 and carry out of Cout.

Fig. 5.10 Proposed Hybrid Approximate PPA19

5.11 PROPOSED HYBRID APPROXIMATE PPA20

Fig. 5.11 Proposed Hybrid Approximate PPA20

The Proposed Hybrid approximate PPA20, shown in Figure 5.11, is a 32-bit adder that is

divided into Four phases. It comprises of three distinct Exact PPAs and one Approximate Structure.

The approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces

29

approximate sum output vales from S0 to S7 using the logical OR operation in the final stage and carry

output C7. This carry output C7 is used as carry input for the next stage of exact Han-Carlson 8-bit

adder. The Han-Carlson 8-bit adder structure, taking bits from 8 to 15 of inputs A and B, generates a

sum output with Exact values from S8 to S15 and carry out of C15. This carry out C15 is taken as input

for the next exact Ladner-Fischer 8-bit Adder. The Ladner-Fischer 8-bit adder structure, taking bits

from 16 to 23 of inputs A and B, generates a sum output with exact values from S16 to S23 and carry

out C23. The Sklansky 8-bit adder structure, taking bits from 24 to 31 of inputs A and B, generates a

sum output with Exact values from S24 to S31 and carry out of Cout.

.

30

CHAPTER 6

IMAGE PROCESSING APPLICATIONS

6.1 INTRODUTION
 Image processing refers to the manipulation and analysis of digital images using

computational algorithms. It encompasses a wide range of techniques aimed at enhancing, contrast,

and extracting useful information from images. The Image Processing Applications are used Image

enhancement and Image constrat using FPGA In Loop.

1. IMAGE ENHANCEMENT: Image enhancement refers to a set of techniques used to improve

the visual quality of digital images. The goal of image enhancement is to make images more visually

appealing, easier to interpret, or better suited for specific applications. Enhancement techniques aim

to adjust various image attributes such as brightness, contrast, sharpness, and colour balance.

 2. IMAGE CONTRAST: Image contrast refers to the difference in brightness between the lightest

and darkest parts of an image. A high-contrast image has a wide range of brightness levels, with

distinct differences between bright and dark areas, while a low-contrast image has a narrower range

of brightness levels, resulting in less pronounced differences between light and dark areas.

6.1.1 IMAGE ENHANCEMENT PROCESSING APPLICATION USING FPGA IN LOOP

Fig. 6.1.1 Image Enhancement Processing Application Using FPGA in the Loop

The Figure 6.1.1 Image processing enhancement Application using FPGA in the Loop system,

likely created using a software such as MATLAB Simulink. The flow starts with reading an image

file ("enhance.jpeg"), which is then resized and processed through a series of blocks. These blocks

include a transformation function U(:), converting the image to a frame, and a custom function block

(F I L) that sums the input and performs other operations. The processed data is then passed through

a reshape function (U,M,N) to convert it back to image format for visualization. Additionally, the

original resized image is displayed using a separate Video Viewer block. The system seems to

31

perform an enhancement or filtering operation on the image and displays both the original and

processed images for comparison. It is used for functional verification in real time system

environment using FPGA in the Loop process for real time implementation on board.

6.1.1.1 Experimental Results for Image Enhancement using FPGA In Loop

 Fig. 6.1.1.2 Input Image Fig. 6.1.1.3 Output Image Fig. 6.1.1.4 FPGA Setup

6.1.2 IMAGE CONTRAST PROCESSING APPLICATION USING FPGA IN THE LOOP

Fig. 6.1.2 Image Constrat Processing Application Using FPGA in the Loop

Image contrast is a critical parameter in image processing and computer vision that defines

the difference in luminance or color that makes an object distinguishable from other objects and the

background. High contrast images have a wide range of tones from black to white, making details

and edges more visible and distinct. Conversely, low contrast images have a narrower range of tones,

appearing more muted and less defined. Enhancing image contrast is essential for various

applications, including medical imaging, remote sensing, photography, and surveillance, where

clarity and detail are paramount. Techniques for contrast enhancement include histogram

equalization, adaptive histogram equalization, contrast stretching, and using advanced algorithms

such as CLAHE (Contrast Limited Adaptive Histogram Equalization).In a typical image processing

32

workflow, contrast adjustment might be one of the first steps performed after image acquisition. This

can significantly improve the quality of the image, making subsequent steps like edge detection,

segmentation, and object recognition more effective. The block diagrams provided likely represent a

system designed to adjust and enhance image contrast, showcasing both the original and enhanced

images for analysis and comparison. The Figure 6.1.2 Image Processing Constrat Application Using

FPGA in the Loop illustrates an image processing workflow designed to enhance image contrast,

starting with an image file labeled "resize.jpg." The image undergoes a transformation through a

function U(:), then is converted to a frame for processing. The system incorporates constants (5, 3,

and 2), which are combined using arithmetic operations facilitated by summation and custom function

blocks (F I L). These operations adjust the image data to enhance contrast. The processed image data

is then reshaped using the reshape(U,M,N) block to convert it back to an image format. The final

enhanced image is displayed using a Video Viewer block, while the original resized image is also

displayed separately for comparison. This workflow demonstrates a systematic approach to

improving image contrast, making the details and edges more prominent, thereby facilitating better

analysis and visualization

6.1.2.1 Experimental Results for Image Contrast Using FPGA in the Loop

 Fig. 6.1.2.2 Input Image Fig. 6.1.2.3 Output Image

 Fig. 6.1.2.4 Input Image Fig. 6.1.2.5 Output Image

33

CHAPTER-7

SIMULATION RESULTS

7.1 INTRODUCTION

The outcomes of the Proposed Approximate PPA, Proposed Hybrid Approximate PPA, and

Proposed Hybrid Approximate PPA simulations for 32-bit are displayed in Tables 7.1.1, 7.1.2, and

7.1.3, correspondingly. The implementation carried on the Artix-7 (XC7A35TICSG324-1L) FPGA

board. The IEEE 1364-2005 Verilog HDL is used to model all the approximate adders. All existing

and proposed adders were simulated using Xilinx Vivado 2018.1 software tool. Parameters of no. of

LUTs, delay, and power consumption are measured from simulation. In the experimentation using

FPGA IN LOOP, IEEE 1801-2009/2018 unified power format is used. While implementing image

processing with FPGA, IEEE 1588 clock synchronization is used. To connect FPGA board to Laptop,

JTAG (IEEE 1149.1-1990) is used.

7.2 SIMULATION AND SYNTHESIS RESULTS

 7.2.1 Literature Review Results

 The simulation results of the Exact SK, Existing AxSK, and Proposed AxSK Adders for 16 bits are

shown in Figures 7.2.2,7.2.3, and 7.2.4, respectively. Based on those figures, the total values of the

precise SK, AxSK, and suggested AxSK adders are 4146, 3F06, and 3F26, respectively. The two

input numbers that are applied to all three adders are 8A12 and B734. The current and suggested

AxSK error rates are 0,0.7053,0.6658. Table 7.2.1.4 presents a quantitative study of the area and

latency in terms of LUTs for the 8-bit, 16-bit, and 32-bit AxSK adders that are already in use and

those that are proposed.

Fig. 7.2.1.1[1] Exact SK 16-Bit Adder Simulation

Fig. 7.2.1.2 [1] AxSK 16-Bit Adder Simulation

34

 Fig. 7.2.1.3 [1] Proposed AxSK 16-Bit Adder simulation

Table 7.2.1.4 Area and Delay Analysis of the Proposed and Existing AxSK Adder

The simulation results are shown in Figures 7.2.1.5,7.1.2.6, and 7.2.1.7 for the 32-bit versions

of the Exact LF, Existing AxLF, and Proposed AxLF Adders. It is evident from those figures that

88716723 and B781ADDA are the two input numbers applied to all three adders, and that 3FF314FD,

3FF080FD, and 3FF0CAFD are the corresponding total values for the Exact LF, Existing AxLF, and

Proposed AxLF Adders. The error rates of the present AxLF are 0.003147720, while the projected

AxLF is 0.002794784. Table 7.2.1.8 presents a quantitative analysis of latency and area in terms of

LUTs for the proposed and existing AxLF adders of 8-bit, 16-bit, and 32-bit. Table 4 illustrates that

the AxLF 32-bit adder that is recommended needs less area and time.

Fig. 7.2.1.5 Exact 32-bit LF Adder simulation

 Fig. 7.2.1.6 Existing 32-bit AxLF Adder simulation

No.
of

bits

Exact
SK

Adder
LUT
[1]

Exact SK
Adder

Delay (ns)
[1]

AxSK
Adder
LUT
[1]

AxSK
Adder
Delay
(ns)[1]

Proposed
AxSKAdder

LUT
[1]

Proposed
AxSK
Adder

Delay(ns)
[1]

8 1386 9.234 1381 8.018 1381 8.018
16 1460 8.967 1445 7.051 1445 7.051
32 1668 9.018 1662 7.775 1662 7.775

35

 Fig. 7.2.1.7 Proposed32-bit AxLF Adder simulation

Table 7.2.1.8 Area and Time Analysis of the Existing and Proposed AxLF adders

Results are obtained using Xilinx 14.2 tool and Cadence RTL Compiler. Path delay (ns) is calculated

automatically using synthesis process in Xilinx Tool, Area and Power are Calculated using Cadence

RTL Compiler Tool.

Table 7.2.1.9 Comparison of Knowles and Modified Knowles adder

Parallel prefix adders Area

[32]

Power(nw)

[32]

Path delay(ns)

[32]

16-bit Knowles adder 414.893 9993.106 14.452

16-bit Modified

Knowles adder

340.805 8886.989 13.369

 Fig. 7.2.1.10 [31] Simulation and synthesis of Han-Carlson adder

Bits exact LF
adder
LUT
[1]

exact LF
adder

Delay (ns)
[1]

AxLF Adder
LUT
[1]

AxLF Adder
Delay (ns)

[1]

Proposed
AxLF
adder

LUT[1]

Proposed
AxLF adder
Delay(ns)

[1]
8 1386 9.981 1383 8.837 1383 8.837
16 1454 9.463 1451 7.851 1451 7.851
32 1679 9.650 1668 8.005 1668 8.005

36

Verilog descriptions of the proposed variable latency speculative adders, and of their non-speculative

counterpart. It is not easy to compare performances (in terms of power, speed, and area) of different

designs, since they strongly depend on timing constraint used during synthesis. The adders we

described in following discussions are CLA (Carry Look Ahead Adder) and HCA (Han Carlson

Adder)

 Table 7.2.1.11 Comparison of CLA Kogge stone and Han Carlson

 CLA [31] KS [31] HC [31]

Delay(ns) 22.95 21.82 20.82

No of Slices 1% 1% 1%

No of 4 input LUTs 1% 1% 1%

No of I/O 23% 21% 21%

Simulation results of Exact BK, AxBK, and Proposed AxBK Adders for 16 bits are shown in Figures

Fig.7.2.1.12, Fig.7.2.1.13, and Fig.7.2.1.14 respectively. From those figures, we can observe that the

two input numbers applied are 5AC3 and E8F9 input to all three adders, and the sum values of Exact

BK, AxBK, and Proposed AxBK Adders are 43BC,43B8, and 43BA respectively. The error rates for

existing and proposed AxBK are 0,0.0843,0.0434. Table 2 gives the quantitative analysis of delay

and area in terms of LUTs of the existing and Proposed AxBK Adders of 8-bit, 16-bit, and 32-bit.

From Table 7.2.1.15, it can be observed that the proposed AxBK 32-bit adder takes less area and less

delay

 Fig. 7.2.1.12 Simulation Result of Exact BK 16-Bit Adder

37

Fig. 7.2.1.13 Simulation Result of AxBK 16-Bit Adder

 Fig. 7.2.1.14 Simulation Result of Proposed AxBK 16-Bit Adder

Table 7.2.1.15 Area and Delay Analysis of the Proposed and Existing AxBK Adder

Simulation results of Exact KS, AxKS and Proposed AxKS Adders for 32 bits are shown in Figures

Fig.7.2.1.16, Fig.7.2.1.17 and Fig.7.2.1.18 respectively. From those figures we can observe that the

two input numbers applied are 8AB87B67H and B788ABDAH input to the all three adders and the

sum values of Exact KS, AxKS and Proposed AxKS Adders are 42412741H, 3D308639H and

3D30D6BDH respectively. The error rates for existing and proposed AxKS are

0,1.571725781914016,1.571344539474199. Table 7.2.1.19 gives the quantitative ananlysis of delay

and area in terms of LUTs of the existing and Proposed AxKS Adders of 8-bit, 16 bit and 32 bit.

From the table 2, it can be observed that proposed AxKS 32-bit adder takes less area and less delay.

Fig. 7.2.1.16 Simulation result of 32-bit Exact KS Adder

No. of
bits

Exact BK
Adder

LUT [1]

Exact BK
Adder Delay

(ns) [1]

AxBK
Adder

LUT [1]

AxBK
Adder
Delay
(ns)[1]

Proposed
AxBKAdder

LUT [1]

Proposed
AxBK
Adder

Delay(ns)[1]
8 1387 8.769 1388 7.861 1385 8.625

16 1460 9.583 1455 8.494 1453 8.629
32 1696 8.204 1654 7.314 1651 7.201

38

Fig. 7.2.1.17 Simulation result of 32-bit AxKS Adder

Fig. 7.2.1.18 Simulation result of 32-bit Proposed AxKS Adder

Table 7.2.1.19 Analysis of Area and Delay of existing and Proposed AxKS Adder

7.2.2 Xilinx Vivado Simulation and Synthesis Results

Table 7.2.2.1 Performance Analysis of Proposed Approximate PPA

S. No Types of Proposed Approximate PPA

(24+8) bits

LUT Delay (ns)

1 Proposed AxBK PPA 1663 7.532

2 Proposed AxKS PPA 1676 6.975

3 Proposed AxLF PPA 1664 7.538

4 Proposed AxSK PPA 1658 8.236

5 Proposed AxKW PPA 1679 7.983

6 Proposed AxHC PPA 1667 7.014

No. of
bits

Exact KS
Adder

LUT [2]

Exact KS
Adder [2]
Delay (ns)

AxKS
Adder

LUT [2]

AxKS
Adder
Delay

(ns) [2]

Proposed
AxKS
Adder

LUT [2]

Proposed
AxKS Adder
Delay(ns)[2]

8 1389 8.095 1386 8.024 1386 8.022
16 1525 9.482 1453 9.067 1453 9.066
32 1659 17.460 1654 7.086 1654 7.084

39

Table 7.2.2.1 presents the performance analysis of various types of 32-bit Proposed

Approximate PPA. Among them, the Kogge Stone adder demonstrates superior speed and reduced

delay compared to the others. Additionally, the Brent Kung PPA exhibits a smaller area when

compared to other types of Proposed Approximate PPA.

Table 7.2.2.2 Performance Analysis of Proposed Hybrid Approximate PPA

S.NO Types of Proposed Hybrid Approximate PPA

(12+12+8) bits

LUT Delay(ns)

1 Proposed Hybrid Approximate PPA1 1651 6.748

2 Proposed Hybrid Approximate PPA2 1658 8.021

3 Proposed Hybrid Approximate PPA3 1668 8.506

4 Proposed Hybrid Approximate PPA4 1679 8.559

5 Proposed Hybrid Approximate PPA5 1667 6.998

6 Proposed Hybrid Approximate PPA6 1662 8.260

7 Proposed Hybrid Approximate PPA7 1661 6.985

8 Proposed Hybrid Approximate PPA8 1663 7.294

9 Proposed Hybrid Approximate PPA9 1672 7.953

10 Proposed Hybrid Approximate PPA10 1662 7.195

The Performance analysis of Proposed Hybrid Approximate PPA study on various Hybrid

Adders is presented in table 7.2.2.2 According to the table, the most prevalent type is Proposed Hybrid

Approximate PPA1, which has a LUT size of 1651 and a delay of 6.748ns. This type exhibits lower

delay and area compared to other Proposed Hybrid Approximate PPA types, while delivering high-

speed performance with a lower error rate.

The table 7.2.2.3 presents the Performance analysis of Proposed Hybrid Approximate PPA

study on various Hybrid Adders. Among them, the most common types are Proposed Hybrid

Approximate PPA11, Proposed Hybrid Approximate PPA15, and Proposed Hybrid Approximate

PPA16 with a LUT size of 1650. However, there is a slight change in delay among these three types,

with the first hybrid adder having slightly lower delay compared to the other two. This particular type

demonstrates lower delay and area in comparison to other Proposed Hybrid Approximate PPA types,

while maintaining high-speed performance with a lower error rate.

40

Table 7.2.2.3 Performance Analysis of Proposed Hybrid Approximate PPA

7.3 IMAGE PROCESSING FOR LITERATURE REVIEW RESULTS

Output results of Exact BK, AxBK, and Proposed AxBK Adders for 16 bits are shown in

Figures Fig.7.3.3,7.3.4,7.3.5,[1] respectively. From those figures, we can observe that the two input

images applied are shown in Fig.7.3.1 and Fig.7.3.2 input to all three adders, and the PSNR values of

Exact BK, AxBK, and Proposed AxBK Adders are calculated respectively in Table 7.3.6.

Fig. 7.3.1[1] Input Image1 Fig. 7.3.2[1] Input Image2 Fig.7.3.3[1] Exact 16-bit BKPPA

S.NO Types of Proposed Hybrid Approximate PPA

(8+8+8+8) bits

LUT Delay(ns)

1 Proposed Hybrid Approximate PPA11 1650 6.075

2 Proposed Hybrid Approximate PPA12 1654 7.483

3 Proposed Hybrid Approximate PPA13 1653 8.352

4 Proposed Hybrid Approximate PPA14 1653 8.152

5 Proposed Hybrid Approximate PPA15 1650 7.288

6 Proposed Hybrid Approximate PPA16 1650 7.018

7 Proposed Hybrid Approximate PPA17 1651 7.442

8 Proposed Hybrid Approximate PPA18 1659 7.467

9 Proposed Hybrid Approximate PPA19 1659 7.968

10 Proposed Hybrid Approximate PPA20 1657 7.234

41

Fig.7.3.4[1] Existing 16-bit AxBK PPA Fig.7.3.5[1] Proposed 16-bit AxBKPPA

Table 7.3.6 Calculation of PSNR (dB) for BK PPA

Output results of Exact KS, AxKS, and Proposed AxKS Adders for 32 bits are shown in Figures

Fig.7.3.7,7.3.8,7.3.9,[2] respectively. From those figures, we can observe that the two input images

applied are shown in Fig.7.3.1 and Fig.7.3.2 input to all three adders, and the PSNR values of Exact

KS, AxKS, and Proposed AxKS Adders are calculated respectively in Table 7.3.10.

Table 7.3.10 Calculation of PSNR (dB) for KS PPA

No of bits Exact BK Adder

[1]

AxBK Adder

[1]

Proposed AxBK Adder

[1]

8 46.459701 27.987721 27.908850

16 62.230587 53.218859 53.217293

32 190.974765 103.570406 103.570350

No of bits Exact KS Adder

[2]

AxKS Adder

[2]

Proposed AxKS Adder

[2]

8 50.532650 28.817192 28.831202

16 63.333202 53.027539 53.023366

32 128.681882 101.245601 101.244375

42

Fig.7.3.7 Exact 32-bit KSPPA Fig.7.3.8 Ax 32-bit KSPPA Fig.7.3.9 Proposed 32-bit KSPPA

Output results of Exact LF, AxLF, and Proposed AxLF Adders for 32 bits are shown in Figures

Fig.7.3.11,7.3.12,7.3.13,[1] respectively. From those figures, we can observe that the two input

images applied are shown in Fig.7.3.1 and Fig.7.3.2 input to all three adders, and the PSNR values of

Exact BK, AxBK, and Proposed AxBK Adders are calculated respectively in Table 7.3.14.

Fig.7.3.11 Exact 32-bit LFPPA Fig.7.3.12 Ax32-bit LFPPA Fig.7.3.13 Proposed 32-bit LFPPA

Table 7.3.14. Calculation of PSNR (dB) for LF PPA

Output results of Exact SK, AxSK, and Proposed AxSK Adders for 16 bits are shown in Figures

Fig.7.3.15,7.3.16,7.3.17,[1] respectively. From those figures, we can observe that the two input

images applied are shown in Fig.7.3.1 and Fig.7.3.2 input to all three adders, and the PSNR values of

Exact SK, AxSK, and Proposed AxSK Adders are calculated respectively in Table 7.3.18.

No of
Bits

Exact LF adder

[1]

Existing AxLF adder

[1]

Proposed AxLF adder

[1]

8 50.63385 28.9066 26.888650

16 72.998084 55.712602 55.704465

32 190.9747 102.657723 102.657714

43

Fig. 7.3.15 Exact 16-bit SKPPA Fig. 7.3.16 AxSK 16-bit PPA Fig. 7.3.17 Proposed 16-bitSKPPA

 Table 7.3.18 Calculation of PSNR (dB) for SK PPA

7.4 IMAGE PROCESSING RESULTS USING SYSTEM GENERATOR

System Generator is a DSP design tool from Xilinx that enables the use of the MathWorks model-

based Simulink design environment for FPGA design. The design tools facilitate the design processes

by obscuring the technical knowledge necessary for FPGA a Register Transfer Level (RTL) design.

Instead, a design is modelled using the intuitive visual environment within Simulink that uses several

specific block sets accelerate the development. Additionally, System Generator can perform the

FPGA implementation steps: synthesis, mapping, and place and route to generate the FPGA

executable file

The image processing method need to be implemented in hardware in order to meet the real time

applications. FPGA implementation can be performed using prototyping environment using

Matlab/Simulink and Xilinx System Generator tool. The design flow of hardware implementation of

image processing using XSG is given in Fig.7.4.1. Image source and image viewer are Simulink block

sets by using these blocks image can give as input and output image can be viewed on image viewer

block set. Image pre-processing and image post-processing unite are common for all the image

processing applications which are designed using Simulink blocksets.

No of bits Exact SK Adder

[1]

Existing AxSK Adder

[1]

Proposed AxSK Adder

[1]

8 48.469801 26.987721 26.907850

16 111.41520 55.712602 55.704465

32 188.964765 101.561406 101.560350

44

Fig. 7.4.1 Design flow of hardware implementation of image processing

A. Image Pre-Processing Unit Image preprocessing in Matlab helps in providing input to FPGA as

specific test vector array which is suitable for FPGA Bitstream compilation using system generator.

 Resize: Set Input dimensions for an image and interpolation i.e. bicubic it helps in preserving fine

detail in an image.

 Convert 2-D to 1-D: Converts the image into single array of pixels.

 Frame conversion and buffer: It helps in setting sampling mode and buffering of data. The model-

based design used for image pre-processing is shown in Fig. 7.4.2 The blocks utilized here are

discussed. Input images which could be color or grayscale are provided as input to the File block.

Fig. 7.4.2 Image Pre-processing unit

B. Image post processing helps recreating image from 1D array. Post-processing uses (Fig.7.4.2.1)

 Data type conversion: It converts image signal to unsigned integer format.

 Buffer : Converts scalar samples to frame output at lower sampling rate.

 Convert 1D to 2D: Convert 1D image signal to 2D image matrix.

 Video viewer: It is used to display the output image back on the monitor

45

Fig. 7.4.2.1 Image Post-processing unit

 Fig. 7.4.3 Input Image 1 Fig. 7.4.4 Input Image 2 Fig.7.4.5 Proposed AxBKPPA

Fig. 7.4.6 Proposed AxKSPPA Fig. 7.4.7 Proposed AxSKPPA Fig. 7.4.8 Proposed AxLFPPA

Fig. 7.4.9 Proposed AxKWPPA Fig.7.4.10 Proposed AxHCPPA Fig.7.4.11 Proposed HAxPPA1

46

Fig.7.4.12 Proposed HAxPPA2 Fig.7.4.13 Proposed HAxPPA3 Fig.7.4.14 Proposed HAxPPA4

 Fig.7.4.15 Proposed HAxPPA5 Fig.7.4.16 Proposed HAxPPA6 Fig.7.4.17 Proposed HAxPPA7

 Fig.7.4.18 Proposed HAxPPA8 Fig.7.4.19 Proposed HAxPPA9 Fig.7.4.20 Proposed HAxPPA10

Fig.7.4.21 Proposed HAxPPA11 Fig.7.4.22 Proposed HAxPPA12 Fig.7.4.23 Proposed HAxPPA13

47

Fig.7.4.24 Proposed HAxPPA14 Fig.7.4.25 Proposed HAxPPA15 Fig.7.4.26 Proposed HAxPPA16

Fig.7.4.27 Proposed HAxPPA17 Fig.7.4.28 Proposed HAxPPA18 Fig.7.4.29 Proposed HAxPPA19

Fig.7.4.30 Proposed HAxPPA20

7.4.31 Calculation of PSNR Values for Proposed Approximate PPA using System Generator

Peak Signal-to-Noise Ratio (PSNR) is a crucial metric used to evaluate the quality of reconstruction

in image and video compression. It quantifies the difference between an original image and a

compressed or processed version, providing a measure of the fidelity and accuracy of the compression

algorithm. Typically expressed in decibels (dB), a higher PSNR value indicates a closer resemblance

to the original image, implying better quality. PSNR is widely used due to its simplicity and the

intuitive understanding it offers: higher PSNR equates to lower error and, therefore, higher visual

48

quality. However, it should be noted that PSNR may not always correlate perfectly with perceived

visual quality, as it is primarily a mathematical measure rather than a perceptual one.

Table 7.4.31 Calculation of Proposed Approximate PPA PSNR Values

S. No Types of Proposed Approximate PPA

(24+8) bits

PSNR (dB)

1 Proposed Approximate BK PPA 107.060868

2 Proposed Approximate KS PPA 107.836712

3 Proposed Approximate LF PPA 107.060868

4 Proposed Approximate SK PPA 107.182541

5 Proposed Approximate KW PPA 107.263412

6 Proposed Approximate HC PPA 107.468125

Table 7.5.1 is Based on the PSNR values for different types of Proposed Approximate Parallel Prefix

Adders (PPA), it is evident that all the evaluated PPAs exhibit excellent performance in image

reconstruction, with PSNR values exceeding 107 dB. Among them, the Proposed Approximate KS

PPA stands out with the highest PSNR of 107.836712 dB, indicating superior quality and minimal

error. The Proposed Approximate HC PPA follows closely, also demonstrating high reconstruction

quality. Proposed Approximate KW and SK PPAs show comparable performance with PSNR values

of 107.263412 dB and 107.182541 dB, respectively, while Proposed Approximate BK and LF PPAs,

both with a PSNR of 107.060868 dB, slightly lag behind. Despite these differences, all PPAs maintain

a high level of accuracy, reflecting their effectiveness in preserving image fidelity during

compression.

7.4.32 Calculation of PSNR for Proposed Hybrid Approximate PPA

Table 7.4.32 Shows the PSNR values for various types of Proposed hybrid approximate PPAs reveal

significant insights into their performance in image reconstruction. Among the evaluated hybrids,

"Proposed Hybrid Approximate PPA4" stands out with the highest PSNR of 108.430561 dB, closely

followed by "Proposed Hybrid Approximate PPA10" at 108.391740 dB, indicating superior image

quality and minimal error. "Proposed Hybrid Approximate PPA2" and "Proposed Hybrid

Approximate PPA8" also demonstrate high performance with PSNR values of 107.960343 dB and

107.803920 dB, respectively. The remaining PPAs, although slightly lower in PSNR, still maintain

excellent reconstruction quality, with values all above 106.94 dB. Overall, the Proposed hybrid

49

designs effectively enhance image fidelity, with certain combinations like Proposed HAxPPA4 and

Proposed HAxPPA10 providing particularly high accuracy.

Table 7.4.32 Calculation of PSNR for Proposed Hybrid Approximate PPA

S.NO Types of Proposed Hybrid Approximate PPA

(12+12+8) bits

PSNR (dB)

1 Proposed Hybrid Approximate PPA1 107.456310

2 Proposed Hybrid Approximate PPA2 107.960343

3 Proposed Hybrid Approximate PPA3 107.458650

4 Proposed Hybrid Approximate PPA4 108.430561

5 Proposed Hybrid Approximate PPA5 107.242392

6 Proposed Hybrid Approximate PPA6 106.948555

7 Proposed Hybrid Approximate PPA7 107.216459

8 Proposed Hybrid Approximate PPA8 107.803920

9 Proposed Hybrid Approximate PPA9 107.215912

10 Proposed Hybrid Approximate PPA10 108.391740

7.4.33 Calculation of PSNR for Proposed Hybrid Approximate PPA using System Generator

The PSNR values for various types of Proposed Hybrid Approximate PPAs, based on the given data,

provide insight into their effectiveness in image reconstruction. "Proposed Hybrid Approximate

PPA12" achieves the highest PSNR of 109.417188 dB, indicating the best image quality and lowest

error among the tested combinations. This is followed by "Proposed Hybrid Approximate PPA17"

and "Proposed Hybrid Approximate PPA20" with PSNR values of 108.455380 dB and 108.412348

dB, respectively, also demonstrating excellent performance. The majority of other hybrids, including

"Proposed Hybrid Approximate PPA11", "Proposed Hybrid Approximate PPA14", and "Proposed

Hybrid Approximate PPA16", show strong performance with PSNR values around 107 dB, ensuring

high-quality image reconstruction. However, "Proposed Hybrid Approximate PPA13" presents a

notably lower PSNR of 102.972126 dB, indicating poorer image quality.

50

Table 7.4.33 Calculation of PSNR for Proposed Hybrid Approximate PPA

S.NO Types of Proposed Hybrid Approximate PPA

(8+8+8+8) bits

PSNR (dB)

1 Proposed Hybrid Approximate PPA11 107.089177

2 Proposed Hybrid Approximate PPA12 109.417188

3 Proposed Hybrid Approximate PPA13 102.972126

4 Proposed Hybrid Approximate PPA14 107.089177

5 Proposed Hybrid Approximate PPA15 106.392073

6 Proposed Hybrid Approximate PPA16 107.067981

7 Proposed Hybrid Approximate PPA17 108.455380

8 Proposed Hybrid Approximate PPA18 107.004355

9 Proposed Hybrid Approximate PPA19 107.117702

10 Proposed Hybrid Approximate PPA20 108.412348

51

CHAPTER-8

VERIFICATION RESULTS

8.1 INTRODUCTION

Field Programmable Gate Arrays (FPGAs) are powerful hardware devices widely used for

implementing real-time, high-performance image processing tasks. Their ability to handle parallel

processing and high data throughput makes them ideal for image processing applications where speed

and efficiency are critical. Here, we will introduce the concept of using FPGAs in a loop for image

processing, detailing the workflow and verification process shown in Fig. 8.1 Image Processing Using

FPGA In Loop. The implementation carried on the Artix-7 (XC7A35TICSG324-1L) FPGA board.

In the experimentation using FPGA IN LOOP, IEEE 1801-2009/2018 unified power format is used.

While implementing image processing with FPGA, IEEE 1588 clock synchronization is used. To

connect FPGA board to Laptop, JTAG (IEEE 1149.1-1990) is used.

8.2 IMAGE PROCESSING USING FPGA IN LOOP

Fig. 8.2 Image Processing Using FPGA In Loop

The image you sent depicts a block diagram of a system for processing images. but here’s a general

breakdown of the steps involved:

1. Image Input: The system takes an image as input, which is denoted by a block labeled

“[text in the image not shown] Image.” This image can be in various formats, such as JPEG,

PNG, or BMP.

2. Data Type Conversion: The image data is then passed through a block labeled “Data Type

Conversion.” This block likely converts the image data from its original format into a format

that the system can process. For instance, the image data might be converted from a high-level

format like JPEG into a simpler binary format.

52

3. Image Resizing: Next, the image data goes through a block labeled “Image Resize.” This

block may resize the image to a specific resolution. Resizing an image involves changing the

number of pixels in the image. This can be done for various reasons, such as to reduce the file

size of the image or to match the image to the size requirements of the system.

4. Single/reshape (MN): The block labelled “Single/reshape (MN)” likely performs two

operations on the image data. The “Single” operation might convert the data type of the image

from double-precision floating-point numbers to single-precision floating-point numbers.

Single-precision numbers use less memory than double-precision numbers, but they also have

a lower precision (meaning they can represent a smaller range of values). The “reshape (MN)”

operation likely reshapes the image data into a two-dimensional matrix with M rows and N

columns. This is a common way to store and process image data.

1. Video Viewer: The output from the previous block is then fed into a block labeled “Video

Viewer.” It’s important to note that the system is processing an image, not a video. The “Video

Viewer” block might be a generic term for a block that can display the processed data. In this

case, it would be displaying the image data.

2. Data Type Conversion: The system also has another block labeled “Data Type

Conversion.” The purpose of this block is likely similar to the first “Data Type Conversion”

block. It might convert the processed image data back into its original format or into a different

format for further processing.

3. Output: The final block in the system is labeled “Out.” This block represents the output of

the system, which could be the processed image data.

Overall, the block diagram depicts a system that can process images in various ways, including

resizing the image, converting the data type, and potentially performing other operations on the image

data.

Fig. 8.2.1 Input Image 1 Fig. 8.2.2 Input Image 2 Fig. 8.2.3 Output Image

53

CHAPTER 9

CONCLUSION AND FUTURE SCOPE

9.1 CONCLUSION

Various approximation adders have been examined, simulated, and analyzed in this study. The

experimental findings were then implemented. Within this project, novel approximate parallel prefix

adders were devised and implemented to attain decreased area and delay, along with high PSNR

values. This addition method is exceptionally swift and can be executed for large numbers in

significantly less time, yielding superior outcomes. The proposed Ax parallel Prefix adders exhibit

potential applications in digital signal processing, ALU units, and Image Processing. In this project,

image enhancement and image contrast applications are implemented.

9.2 FUTURE SCOPE

The focus is on further research on hybrid PPAs, architecture modifications, and specific image

processing applications and implementation.

54

9.3 REFERENCES

[1] R. P. Brent and H. T. Kung, “A regular layout for parallel adders,” Compute. Eng., vol. C-31,

IEEE, Trans., vol. C-31, no. 3, pp. 260-264, 1982 [doi:10.1109/TC.1982.1675982].

[2] Dr.M. Sarada Musala, Satish Kanapala, Sudhakar Reddy Dantla, Prudhvi Tummala,

“Approximate Brent Kung Adder for Image Processing Applications.”, Proceedings of 2023,

Springer.

[3] Dr.M. Sarada Musala, Satish Kanapala, Sudhakar Reddy Dantla, Prudhvi Tummala, “High Speed

Area Efficient Approximate Kogge Stone Adder.”, IEEE Proceedings of 2023.

[4] Y. Choi, “Parallel prefix adder design” in Proc. 17th IEEE Symposium on Computer Arithmetic,

Jun. 27 2005, pp. 90-98.

[5] T. Lynch and E. E. Swartzlander, "A spanning tree carry look-ahead adder," IEEE Trans.

Compute., vol. 41, no. 8, pp. 931-939, Aug. 1992 [doi:10.1109/12.156535].

[6] B. C. Geetha and D. M. Lohitha, “Navya and Pramod,” Perform. Anal. Parallel Prefix Adder

Datapath Des., IEEE Xplore Compliant - Part Number: CFP18BAC-ART; ISBN: 978-1-5386-1974-

2, p. V.

[7] M. M. Azevedo da Rosa et al., “AxPPA: approximate parallel prefix adders,” IEEE Trans. Very

Large Scale Integrated. (VLSI) Syst., vol. 31, no. 1, January 2023.

[8] P. da Costa et al., " Improved approximate multipliers for single-precision floating-point hardware

design,' in Proc. IEEE" 13th Latin Am. Symp. Circuits Syst. (LASCAS), Mar. 2022, pp. 1-4.

[9] “Comparative analysis of parallel prefix adders,” Megha Talsania and Eugene John.

[10]"Parallel prefix adder design," IEEE Trans. Compute., 2001, Andrew Beaumont- Smith and

Cheng–Chew Lim.

[11] A. Kumar et al., “Design and study of adder multiplier by using 4:2 compressors and parallel

prefix adder for VLSI-circuit design” 2nd International Conference for Emerging Technology

(INCET) Belgaum, India May, vols. 21-23, 2021.

55

[12] M. Prasanna Kumar et al., "'Comparative Analysis of Brent Kung and Kogge Stone Parallel

Prefix Adders for their Area, Delay and Power Consumption', research paper engineering," ISSN,

vol. 5, no. 10, Oct., p. 2249555, 2015.

[13] P. P. Potdukhe and V. D. Jaiswal, Design of High-Speed Carry Select Adder Using Brent Kung

Adder [doi:10.1109/ICEEOT.2016.7754762].

[14] N. Udaya Kumar and K. Bala, Sindhuri; K. Durga Teja; D. Sai Satish, Implementation and

comparison of VLSI architectures of 16-bit carry select adder using Brent Kung adder.

[15] K. Golda, Hepzibah; CP. SubhaA Novel Implementation of High-Speed Modified Brent Kung

Carry Select Adder.

[16] G. G., S. S. Raju, and S. Suresh, "Parallel Prefix Speculative Han Carlson Adder," in IOSR

Journal of Electronics and Communication.

[17] B. Koyada et al., "A comparative study on adders" in IEEE Conference on Wireless

Communication, Signal Processing and Networking, 2017 [doi:10.1109/WiSPNET.2017.8300155].

[18] B. Mohamad et al., "Template matching using the sum of squared difference and normalized

cross-correlation" in Proc. IEEE Student Conference Res. Develop. (Scorned), Dec. 2015, pp. 100-

104.

[19] M. M. A. da Rosa et al., "'Exploring efficient adder compressors for the power-efficient sum of

squared differences design,' in Proc.," Circuits Syst. (ICECS) 27th IEEE Int. Conf. Electron., Nov.

2020, pp. 1-4.

[20] A. V. Gupta et al., Low-Power Digital Signal Processing Using Approximate.

[21] S. K. Yezerla and B. R. Naik, “Design and Estimation of delay power and area for Parallel prefix

adders.”, Proceedings of, 2014, RAECS, 06-08 March, 2014

[22] N. H. E. Weste et al., VLSI Design. Pearson: Addison-Wesley, 2011.

[23] S. Sri Katyayani, Dr.M. Chandramohan Reddy, Murali.k, “Design of Efficient Han-Carlson-

Adder”, (IJET).

[24] Pawan Kumar1, Jasbir Kaur2” Design of Modified Parallel Prefix Knowles Adder” International

Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Impact Factor (2012): 3.358.

