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Abstract 

Approximate parallel prefix adders (AxPPA) are a type of circuit that can perform addition 

operations on binary numbers with high speed and low power consumption with less area. These 

circuits provide approximate results, which means that they sacrifice accuracy for efficiency. This 

trade off makes them ideal for use in applications where speed is more important than precision. In 

recent years, there has been a growing interest in the development of these circuits, as they have the 

potential to revolutionize the field of digital signal processing. In this project, we will provide an 

overview of approximate parallel prefix adders and methods for reducing the error rate of AxPPA by 

modification of the architectures for the following PPA adders: approximate Brent–Kung 

(AxBKPPA), approximate Kogge–Stone (AxKSPPA), Ladner-Fischer (AxLFPPA), Knowles 

(AxKWPPA), Han Carlson (AxHCPPA) and Sklansky (AxSKPPA). The proposing adders aims at 

reduce the area, power dissipation, delay and error rate. These will be designed, simulated and 

implemented with Verilog HDL (IEEE 1364-2005), Xilinx Vivado software tool (Xilinx 

Vivado2018.1) and Digilent Artix7 FPGA board (XC7A35TICSG324-1L) respectively. The adders 

are verified by implementing them in image processing applications. 
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CHAPTER-1 

INTRODUCTION 

1.1 INTRODUCTION 

Parallel Prefix Adders in VLSI are a class of digital circuits and systems, adders play a vital 

role in performing fast arithmetic operations is increasing day by day. They are highly efficient 

provide performance in terms of speed, area and power consumption. they are widely used in 

VLSI circuits such as microprocessors, digital signal processors etc and some of the design 

methodologies used for building these adders are the brent kung, kogge stone, sklansky, Ladner 

Fisher, Knowles, and Han Carlson adder. Approximate parallel prefix adders instead of exact 

parallel prefix adders for certain applications where exactness is not critical and some amount of 

error can be tolerated. These approximate adders are designed to provide approximate output 

with lower area and power consumption and higher speed compared to exact parallel prefix 

adders. 

Approximate computing is a computing paradigm that trades off accuracy for efficiency. 

Instead of always providing precise results, approximate computing techniques aim to deliver 

results that are "approximately correct" within certain acceptable bounds. This approach can be 

particularly useful in scenarios where exact accuracy is not critical or where there are resource 

constraints such as time, energy, or hardware limitations. Some common techniques used in 

approximate computing include Reduced Precision Arithmetic, Algorithmic Approximations, 

Selective Precision, Early Termination, Speculative Execution, Error-Tolerant Data Structures. 

It is particularly relevant in domains such as signal processing, machine learning, multimedia 

applications, and scientific computing, where small errors in computation can often be tolerated 

without significantly impacting the overall result or user experience. However, it's essential to 

carefully analyze the impact of approximation on the specific application to ensure that the 

introduced errors are within acceptable bounds. 

1.2 MOTIVATION 

  Approximate computing (AC) is a method that trades off accuracy for better performance and 

energy efficiency. It takes advantage of the fact that many applications are resilient to imprecision 

and soft errors. Some advantages of approximate computing include, Improved network performance, 

Energy efficiency, Image processing etc. AC can be an innovative method for image processing, with 

the advantages of lower power and high accuracy. Addition is one of the important and basic 

requirements in AC with more speed. To get more speed Parallel prefix adders are used. So, this 

project aims to design and implement Approximate Parallel prefix adders (AxPPA). 
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1.3 OBJECTIVES 

 To design and implement: 

 AxPPA with less Area 

 AxPPA with more speed 

 AxPPA with less error rate 

 Implementing Image processing application with more PSNR 

1.4 TOOLS AND STANDARDS  

       Tools and standards are: 

 IEEE 1364-2005 is the standard for Verilog Hardware Description Language (HDL) 

used in digital design. 

 Xilinx Vivado 2018.1 is a software tool suite for FPGA design and implementation, 

developed by Xilinx. 

 IEEE 1149.1-1990 Joint Test Action Group(JTAG) 

 IEEE 1801-2009/2018, also known as the Unified Power Format (UPF), is a standard 

for specifying power intent in electronic design. 

 IEEE 1588 is the standard for Precision Time Protocol (PTP), used for synchronization 

of clocks in a computer network. 

 Xilinx Artix7 FPGA board (XC7A35TICSG324-1L) is a System-on-Chip device that 

integrates FPGA fabric with ARM Cortex-A9 processors, providing a versatile 

platform for embedded systems development. 
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CHAPTER-2 

LITERATURE REVIEW 

2.1 INTRODUTION 

In the realm of Approximate VLSI, parallel prefix adders play a significant role in processing 

chips as they are utilized to add two large binary values and perform the addition operation. The 

primary objectives for this type of adder are to minimize the area, improve speed, and reduce the error 

rate. In order to tackle the challenges faced in the Exact PPA domain, enhancements have been made 

to enhance efficiency and decrease delay. The introduction of the current PPA adder aimed to achieve 

these goals by minimizing the area, reducing delay, and error rates. However, to further optimize the 

delay and error rate, the development of the Approximate PPA took place. This innovative solution 

aims to deliver superior results at the output by further reducing delay while maintaining a minimal 

error rate. The computation results, which are nearly accurate, are evaluated as approximate, thus 

confirming their suitability for practical use in Image Processing Applications. Approximate 

computing, also known as AxC, is a novel design approach that aims to enhance efficiency throughout 

the computing stack by leveraging the natural fault tolerance of various applications. AxC introduces 

accuracy, which refers to the quality of outcomes, as a fresh explicit aspect for balancing design 

enhancements. This strategy can significantly reduce the VLSI circuit area and energy usage for 

computations. 

2.2 EXISTING APPROXIMATE PPA 

 

 

 

 

 

 

 

 

 

                                                 Fig. 2.2.1 Exact 16-Bit Brent Kung Adder 

The parallel arithmetic operations performed by the Brent-Kung adder are implemented using 

a tree structure. Richard Peirce Brent and Hsiang Te Kung first proposed it in 1982. This is a great 

choice for low-power designs as it is designed to reduce chip space and facilitate manufacturing. The 

gray and black cells make up the Brent-Kung adder, with each black cell having two AND gates and 

one OR gate. Compared to other adder topologies, it has greater regularity, which reduces cable 
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clutter and improves performance. Figure 2.2.1 shows the structure of the 16-bit Brent Kung adder. 

Calculating the carry from the least significant bit adder (LSB) to the most significant bit adder (MSB) 

determines the critical route in the BK adder, which is why one tries to shorten the critical path so 

that the storage unit can reach the MSB. 

 

 

                            

 

 

 

 

 

                                        Fig. 2.2.2 Exact 16-Bit Kogge Stone Adder 

 Kogge Stone Adder is a parallel-prefix shape carry look-ahead adder. It was once developed 

via Peter M. Kogge and Harold S. Stone which they posted in 1973. KS adder is a fast adder layout 

as it generates carry signal in low delay and has the satisfactory overall performance in VLSI 

implementations. Kogge-Stone adder is broadly used in excessive overall performance 32-bit, 64-bit, 

as it reduces the crucial direction to great extent.Figure 2.2.2 represents the 16-bit Kogge Stone adder  

structure, which has fanout of 2 at each stage. There are a less number of stages with high complexity 

logical operational architecture. KS Adder is broadly used in excessive overall performance addition 

devices with area efficiency and less time delay. 

 
 
 

 

 

 

 

 

                                         

                 Fig. 2.2.3 Exact 16-Bit Ladner Fischer Adder 

In PPA, the carries are generated in parallel and different types of tree structures differ as to 

how they provide cells in the intermediate stages i.e. mainly in the prefix stage. The cells are a group 
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of logic gates that tend to take over the area and can optimize the increase in area by reducing 

operators in stages; as a result, the number of cells is reduced. One of the advantages of the 

approximate adders or multipliers is that, it can be used to produce inaccurate result which will not 

affect the computation. Using this advantage for our proposed work, the cells are limited in the prefix 

stage of the adder. In place of a single black cell involving group propagate/ generate for the last 

stage, and can make use of the same black cell and given that the result remains unaffected which is 

depicted in Fig. 2.2.3 The decision of increasing from the last stage to two or more depends upon the 

bit size of the architecture. Here in this design, each black cell at the top is used to compute the last 

two stages. change can be implemented in the design by altering the VHDL module for simulation.  

 

 

 

 

 

 

 

 

 

                                

Fig.2.2.4 Exact 16-Bit Sklansky Adder Structure 

A Parallel prefix adder that can add binary integers quickly is the Sklansky adder Fig.2.2.4. 

There are several levels of half adders and complete adders among the input bits. The create and 

propagate bits for every pair of bits are calculated at each level. The carry bits for the following level 

are then determined using these bits. The sum bits and the carry-out bit are produced at the last level. 

Because of its logarithmic depth, the Sklansky adder can add n bits in log2 n steps. 

 

 

 

 

 

 

 

Fig.2.2.5 Exact 16-Bit Knowles Adder Structure 
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The Fig.2.2.5 Exact 16-Bit Knowles Adder Structure parallel-prefix tree adders are more favourable 

in terms of speed due to thecomplexity O(log2N) delay (Kogge stone) through the carry path 

compared to that of other adders. This is similar to kogge stone adder except in Last stage wiring 

complexity is reduced to half. But it doubles the Loading. Kogge-Stone adder design is the most 

straightforward, and also it has one of the shortest critical paths of all tree adders. The drawback with 

the Kogge-Stone adder implementation is the large area consumption and the more complex routing 

(Fan-Out) of interconnects. Black boxes are BC and grey cells are GC that cannot be removed, 

because they are required for carry propagation and other calculations. 

 

 

 

 

 

 

 

 

        

                           Fig. 2.2.6 Exact 16-Bit Han-Carlson Adder Structure 

Han-Carlson adder contains a good trade-off between fan out, number of logic levels and number of 

black cells. Because of this, Han-Carlson adder can achieve equal to speed execution admiration to 

Kogge-Stone adder, at lower power utilization and territory. In this manner it is fascinating to execute 

a speculative Han-Carlson adder. Moved by these reasons, we have generated a Han-Carlson 

speculative prefix-processing stage by removing the final rows of the Kogge-Stone part of the adder. 

As an example, Figure 2.2.6 show the Han-Carlson adder in which the two Brent-Kung rows at the 

initial and toward the end of the graph are unaltered, while the last Kogge Stone row is pruned. This 

yields a speculative stage with K=8=n/2.in general, one has K ==n/2p. where P is the quantity of 

pruned levels; the number of levels of the speculative Han-Carlson stage lessens from 1+ log(n) to1+ 

log(k) (assuming that is a power of two). 
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CHAPTER 3 

PROPOSED APPROXIMATE PPA 

3.1 INTRODUCTION 

Proposed Approximate parallel prefix adders represent a fascinating intersection of two 

important concepts in digital circuit design: parallel prefix adders and approximate computing. 

Traditional parallel prefix adders, as mentioned earlier, excel in high-speed arithmetic applications 

by breaking down addition into parallel stages. On the other hand, approximate computing techniques 

aim to trade off accuracy for gains in power, area, or speed. These adders are designed to produce 

approximate results with acceptable accuracy, often sacrificing precision in favor of efficiency. The 

motivation behind Proposed approximate parallel prefix adders lies in applications where perfect 

accuracy isn't crucial or where the computational cost of achieving perfect accuracy outweighs the 

benefits. Examples include multimedia processing, machine learning inference, and certain types of 

signal processing. Designing proposed approximate parallel prefix adders involves careful 

consideration of trade-offs between accuracy, speed, power consumption, and area utilization.  

 

 

 

 

 

 

 

Fig. 3.1 Block diagram of Proposed Approximate PPA 

The Proposed approximate PPA, shown in Figure 3.1, is a 32-bit adder that is divided into 

two phases. It comprises of one distinct Exact PPA and one Approximate Structure. The approximate 

8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces approximate sum output 

vales from S0 to S7 using the logical OR operation in the final stage and carry output C7. This carry 

output C7 is used as carry input for the next stage of exact 24-bit adder. The Exact 24-bit adder 

structure, taking bits from 8 to 31 of inputs A and B, generates a sum output with Exact values from 

S8 to S31 and carry out of Cout. 
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3.2 PROPOSED APPROXIMATE BRENT KUNG PPA 

The Proposed Hybrid Approximate Brent Kung PPA, shown in Figure 3.2, is a 32-bit adder 

that is divided into two phases. It comprises of one distinct Exact Brent Kung PPA and one 

Approximate Structure. The approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs 

A and B, produces approximate sum output values from S0 to S7 using the logical OR operation in the 

final stage and carry output C7. This carry output C7 is used as carry input for the next stage of exact 

Brent Kung 24-bits PPA. The Exact Brent Kung 24-bit PPA structure, taking bits from 8 to 31 of 

inputs A and B, generates a sum output with Exact values from S8 to S31 and carry out of Cout. 

Fig. 3.2 Architecture of Proposed Approximate Brent Kung PPA 

3.3 PROPOSED APPROXIMATE KOGGE STONE PPA 

The Proposed Hybrid Approximate Kogge Stone PPA, shown in Figure 3.3, is a 32-bit adder 

that is divided into two phases. It comprises of one distinct Exact Kogge Stone PPA and one 

Approximate Structure. The approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs 

A and B, produces approximate sum output values from S0 to S7 using the logical OR operation in the 

final stage and carry output C7. This carry output C7 is used as carry input for the next stage of Exact 

Kogge Stone 24-bits PPA. The Exact Kogge Stone 24-bits PPA structure, taking bits from 8 to 31 of 

inputs A and B, generates a sum output with Exact values from S8 to S31 and carry out of Cout. The 

Proposed Approximate Kogge Stone PPA is widely utilized in high-performance computing systems, 

particularly in 32-bit and 64-bit architectures, as it significantly reduces the critical path. 
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                     Fig. 3.3 Architecture of Proposed Approximate Kogge Stone PPA 

3.4 PROPOSED APPROXIMATE SKLANSKY PPA 

The Proposed Hybrid Approximate Sklansky PPA, shown in Figure 3.4, is a 32-bit adder that 

is divided into two phases. It comprises of one distinct Exact Sklansky PPA and one Approximate 

Structure. The approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, 

produces approximate sum output values from S0 to S7 using the logical OR operation in the final 

stage and carry output C7. This carry output C7 is used as carry input for the next stage of Exact 

Sklansky 24-bits PPA. The Exact Sklansky 24-bits PPA structure, taking bits from 8 to 31 of inputs 

A and B, generates a sum output with Exact values from S8 to S31 and carry out of Cout. 

                               Fig. 3.4 Architecture of Proposed Approximate Sklansky PPA 
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3.5 PROPOSED APPROXIMATE LADNER-FISCHER PPA 

The Proposed Hybrid Approximate Ladner-Fischer PPA, shown in Figure 3.5, is a 32-bit 

adder that is divided into two phases. It comprises of one distinct Exact Ladner-Fischer PPA and one 

Approximate Structure. The approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs 

A and B, produces approximate sum output values from S0 to S7 using the logical OR operation in the 

final stage and carry output C7. This carry output C7 is used as carry input for the next stage of Exact 

Ladner-Fischer 24-bits PPA. The Exact Ladner-Fischer 24-bits PPA structure, taking bits from 8 to 

31 of inputs A and B, generates a sum output with Exact values from S8 to S31 and carry out of Cout. 

Fig. 3.5 Architecture of Proposed Approximate Ladner-Fischer PPA 

3.6 PROPOSED APPROXIMATE KNOWLES PPA 

Fig. 3.6 Architecture of Proposed Approximate Knowles PPA 
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The Proposed Hybrid Approximate Knowles PPA, shown in Figure 3.5, is a 32-bit adder that 

is divided into two phases. It comprises of one distinct Exact Knowles PPA and one Approximate 

Structure. The approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, 

produces approximate sum output values from S0 to S7 using the logical OR operation in the final 

stage and carry output C7. This carry output C7 is used as carry input for the next stage of Exact 24-

bits PPA. The Exact Knowles 24-bits PPA structure, taking bits from 8 to 31 of inputs A and B, 

generates a sum output with Exact values from S8 to S31 and carry out of Cout. 

3.7 PROPOSED APPROXIMATE HAN CARLSON PPA 

The Proposed Hybrid Approximate Han Carlson PPA, shown in Figure 3.5, is a 32-bit adder 

that is divided into two phases. It comprises of one distinct Exact Han Carlson PPA and one 

Approximate Structure. The approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs 

A and B, produces approximate sum output values from S0 to S7 using the logical OR operation in the 

final stage and carry output C7. This carry output C7 is used as carry input for the next stage of Exact 

24-bits PPA. The Exact Han Carlson 24-bits PPA structure, taking bits from 8 to 31 of inputs A and 

B, generates a sum output with Exact values from S8 to S31 and carry out of Cout. 

Fig. 3.7 Architecture of Proposed Approximate Han Carlson PPA 
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CHAPTER 4 

PROPOSED HYBRID APPROXIMATE PPA 

4.1 INTRODUCTION 

A hybrid approximate parallel prefix adder likely refers to a specialized type of circuit used 

in digital electronics for fast addition of binary numbers. A parallel prefix adder is a type of adder 

circuit that computes the sum of multiple binary numbers in parallel. It's commonly used in digital 

systems where high-speed arithmetic operations are required. Approximate computing is a paradigm 

where computations are performed with acceptable levels of accuracy rather than exact precision. 

This can lead to faster and more energy-efficient computations at the expense of some loss in 

accuracy. Combining these two concepts, a hybrid approximate parallel prefix adder likely refers to 

a specialized adder circuit that incorporates approximate computing techniques within a parallel 

prefix adder architecture. This could involve using approximate adder cells or approximation 

techniques within the parallel prefix adder to achieve faster computation speeds or reduce energy 

consumption, with a trade-off in accuracy. Such a hybrid approach aims to leverage the benefits of 

both parallelism for speed and approximate computing for efficiency, making it suitable for 

applications where strict precision is not necessary, such as in machine learning accelerators or 

multimedia processing units. 

 

 

 

 

 

 

 

Fig. 4.1.1 Block diagram of Proposed Hybrid Approximate PPA 

The Fig. 4.1.1 Block diagram of Proposed Hybrid Approximate PPA represents a hierarchical 

adder circuit that integrates both exact and approximate adders to achieve a balance between precision 

and efficiency. The circuit begins with exact adder topology1, which takes two 12-bit inputs (B31A31 

and B20A20) and produces two 12-bit sum outputs (S31 and S20) along with a carry output (C19). This 

carry output (C19) is then fed into the next stage, exact adder topology2, which also processes two 12-

bit inputs (B19A19 and B8A8) along with the carry input from the previous stage, generating two more 
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12-bit sum outputs (S19 and S8) and another carry output (C7). Finally, the approximate adder topology 

takes over, handling two 8-bit inputs (B7A7 and B0A0) and the carry input from the second exact adder, 

and producing two 8-bit sum outputs (S7 and S0) along with the final carry output (Cout). This design 

leverages the precision of exact adders for the initial 24 bits and uses an approximate adder for the 

last 8 bits, potentially reducing power consumption and area at the expense of some accuracy.                                            

4.2 PROPOSED HYBRID APPROXIMATE PPA1 

The Proposed Hybrid approximate PPA1, shown in Figure 4.2, is a 32-bit adder that is divided 

into three phases. It comprises of two distinct Exact PPAs and one Approximate Structure. The 

approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces 

approximate sum output values from S0 to S7 using the logical OR operation in the final stage and 

carry output C7. This carry output C7 is used as carry input for the next stage of exact Sklansky 12-

bit adder. The Sklansky 12-bit adder structure, taking bits from 8 to 19 of inputs A and B, generates 

a sum output with Exact values from S8 to S19 and carry out of C19. This carry out C19 is taken as 

input for the next exact Ladner Fischer 12-bit Adder. The Ladner Fischer 12-bit adder structure, 

taking bits from 20 to 31 of inputs A and B, generates a sum output with exact values from S20 to S31 

and carry out of Cout at the end. This Proposed hybrid Approximate PPA1 offers a reduction in area 

and less delay compared to other Proposed adders. 

Fig. 4.2 Proposed Hybrid Approximate PPA1 

4.3 PROPOSED HYBRID APPROXIMATE PPA2 

The Proposed Hybrid approximate PPA2, shown in Figure 4.3, is a 32-bit adder that is divided into 

three phases. It comprises of two distinct Exact PPAs and one Approximate Structure. The 
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approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces 

approximate sum output values from S0 to S7 using the logical OR operation in the final stage and 

carry output C7. This carry output C7 is used as carry input for the next stage of exact Ladner Fischer 

12-bit adder. The Ladner Fischer 12-bit adder structure, taking bits from 8 to 19 of inputs A and B, 

generates a sum output with Exact values from S8 to S19 and carry out of C19. This carry out C19 is 

taken as input for the next exact Sklansky 12-bit Adder. The Sklansky 12-bit adder structure, taking 

bits from 20 to 31 of inputs A and B, generates a sum output with exact values from S20 to S31 and 

carry out of Cout at the end. This Proposed hybrid Approximate PPA2 offers a reduction in area and 

less delay compared to other Proposed adders. 

 

                                        Fig. 4.3 Proposed Hybrid Approximate PPA2 

4.4 PROPOSED HYBRID APPROXIMATE PPA3 

The Proposed Hybrid approximate PPA3, shown in Figure 4.4, is a 32-bit adder that is divided 

into three phases. It comprises of two distinct Exact PPAs and one Approximate Structure. The 

approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces 

approximate sum output values from S0 to S7 using the logical OR operation in the final stage and 

carry output C7. This carry output C7 is used as carry input for the next stage of exact Knowles 12-bit 

adder. The Knowles 12-bit adder structure, taking bits from 8 to 19 of inputs A and B, generates a 

sum output with Exact values from S8 to S19 and carry out of C19. This carry out C19 is taken as input 

for the next exact Sklansky 12-bit Adder. The Sklansky 12-bit adder structure, taking bits from 20 to 

31 of inputs A and B, generates a sum output with exact values from S20 to S31 and carry out of Cout 
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at the end. This Proposed hybrid Approximate PPA3 offers a reduction in area and less delay 

compared to other Proposed adders.  

Fig. 4.4 Proposed Hybrid Approximate PPA3 

4.5 PROPOSED HYBRID APPROXIMATE PPA4 

Fig. 4.5 Proposed Hybrid Approximate PPA4 

The Proposed Hybrid approximate PPA4, shown in Figure 4.5, is a 32-bit adder that is divided 

into three phases. It comprises of two distinct Exact PPAs and one Approximate Structure. The 

approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces 

approximate sum output values from S0 to S7 using the logical OR operation in the final stage and 

carry output C7. This carry output C7 is used as carry input for the next stage of exact Sklansky 12-

bit adder. The Sklansky 12-bit adder structure, taking bits from 8 to 19 of inputs A and B, generates 
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a sum output with Exact values from S8 to S19 and carry out of C19. This carry out C19 is taken as 

input for the next exact Knowles 12-bit Adder. The Knowles 12-bit adder structure, taking bits from 

20 to 31 of inputs A and B, generates a sum output with exact values from S20 to S31 and carry out of 

Cout at the end. This Proposed hybrid Approximate PPA4 offers a reduction in area and less delay 

compared to other Proposed adders. 

4.6 PROPOSED HYBRID APPROXIMATE PPA5 

The Proposed Hybrid approximate PPA5, shown in Figure 4.6, is a 32-bit adder that is divided 

into three phases. It comprises of two distinct Exact PPAs and one Approximate Structure. The 

approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces 

approximate sum output values from S0 to S7 using the logical OR operation in the final stage and 

carry output C7. This carry output C7 is used as carry input for the next stage of exact Knowles 12-bit 

adder. The Knowles 12-bit adder structure, taking bits from 8 to 19 of inputs A and B, generates a 

sum output with Exact values from S8 to S19 and carry out of C19. This carry out C19 is taken as input 

for the next exact Ladner Fischer 12-bit Adder. The Ladner Fischer 12-bit adder structure, taking bits 

from 20 to 31 of inputs A and B, generates a sum output with exact values from S20 to S31 and carry 

out of Cout at the end. This Proposed hybrid Approximate PPA5 offers a reduction in area and less 

delay compared to other Proposed adders.  

                                                      Fig. 4.6 Proposed Hybrid Approximate PPA5 

4.7 PROPOSED HYBRID APPROXIMATE PPA6 

The Proposed Hybrid approximate PPA6, shown in Figure 4.7, is a 32-bit adder that is divided 

into three phases. It comprises of two distinct Exact PPAs and one Approximate Structure. The 
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approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces 

approximate sum output values from S0 to S7 using the logical OR operation in the final stage and 

carry output C7. This carry output C7 is used as carry input for the next stage of exact Ladner Fischer 

12-bit adder. The Ladner Fischer 12-bit adder structure, taking bits from 8 to 19 of inputs A and B, 

generates a sum output with Exact values from S8 to S19 and carry out of C19. This carry out C19 is 

taken as input for the next exact Knowles 12-bit Adder. The Knowles 12-bit adder structure, taking 

bits from 20 to 31 of inputs A and B, generates a sum output with exact values from S20 to S31 and 

carry out of Cout at the end. This Proposed hybrid Approximate PPA6 offers a reduction in and less 

delay compared to other Proposed adders.  

    

 Fig. 4.7 Proposed Hybrid Approximate PPA6 

4.8 PROPOSED HYBRID APPROXIMATE PPA7 

The Proposed Hybrid approximate PPA7, shown in Figure 4.8, is a 32-bit adder that is divided 

into three phases. It comprises of two distinct Exact PPAs and one Approximate Structure. The 

approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces 

approximate sum output values from S0 to S7 using the logical OR operation in the final stage and 

carry output C7. This carry output C7 is used as carry input for the next stage of exact Brent Kung 12-

bit adder. The Brent Kung 12-bit adder structure, taking bits from 8 to 19 of inputs A and B, generates 

a sum output with Exact values from S8 to S19 and carry out of C19. This carry out C19 is taken as input 

for the next exact Ladner Fischer 12-bit Adder. The Ladner Fischer 12-bit adder structure, taking bits 

from 20 to 31 of inputs A and B, generates a sum output with exact values from S20 to S31 and carry 

out of Cout at the end. This Proposed hybrid Approximate PPA7 offers a reduction in and less delay 

compared to other Proposed adders.  
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Fig. 4.7 Proposed Hybrid Approximate PPA6 

4.8 PROPOSED HYBRID APPROXIMATE PPA7  

 

Fig. 4.8 Proposed Hybrid Approximate PPA7 

The Proposed Hybrid approximate PPA7, shown in Figure 4.8, is a 32-bit adder that is divided 
into three phases. It comprises of two distinct Exact PPAs and one Approximate Structure. The 
approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces 
approximate sum output values from S0 to S7 using the logical OR operation in the final stage and 
carry output C7. This carry output C7 is used as carry input for the next stage of exact Brent Kung 12-
bit adder. The Brent Kung 12-bit adder structure, taking bits from 8 to 19 of inputs A and B, generates 
a sum output with Exact values from S8 to S19 and carry out of C19. This carry out C19 is taken as 
input for the next exact Ladner Fischer 12-bit Adder. The Ladner Fischer 12-bit adder structure, 
taking bits from 20 to 31 of inputs A and B, generates a sum output with exact values from S20 to S31 
and carry out of Cout at the end.  
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4.9 PROPOSED HYBRID APPROXIMATE PPA8 

The Proposed Hybrid approximate PPA8, shown in Figure 4.9, is a 32-bit adder that is divided 

into three phases. It comprises of two distinct Exact PPAs and one Approximate Structure. The 

approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces 

approximate sum output values from S0 to S7 using the logical OR operation in the final stage and 

carry output C7. This carry output C7 is used as carry input for the next stage of exact Brent Kung 12-

bit adder. The Brent Kung 12-bit adder structure, taking bits from 8 to 19 of inputs A and B, generates 

a sum output with Exact values from S8 to S19 and carry out of C19. This carry out C19 is taken as input 

for the next exact Sklansky 12-bit Adder. The Sklansky 12-bit adder structure, taking bits from 20 to 

31 of inputs A and B, generates a sum output with exact values from S20 to S31 and carry out of Cout 

at the end.  

                                        Fig. 4.9 Proposed Hybrid Approximate PPA8 

4.10 PROPOSED HYBRID APPROXIMATE PPA9 

The Proposed Hybrid approximate PPA9, shown in Figure 4.10, is a 32-bit adder that is 

divided into three phases. It comprises of two distinct Exact PPAs and one Approximate Structure. 

The approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces 

approximate sum output values from S0 to S7 using the logical OR operation in the final stage and 

carry output C7. This carry output C7 is used as carry input for the next stage of exact Kogge stone 

12-bit adder. The Kogge stone 12-bit adder structure, taking bits from 8 to 19 of inputs A and B, 

generates a sum output with Exact values from S8 to S19 and carry out of C19. This carry out C19 is 

taken as input for the next exact Ladner Fischer 12-bit Adder. The Ladner Fischer 12-bit adder 

structure, taking bits from 20 to 31 of inputs A and B, generates a sum output with exact values from 

S20 to S31 and carry out of Cout at the end.  
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Fig. 4.10 Proposed Hybrid Approximate PPA9 

4.11 PROPOSED HYBRID APPROXIMATE PPA10 

The Proposed Hybrid approximate PPA10, shown in Figure 4.11, is a 32-bit adder that is 

divided into three phases. It comprises of two distinct Exact PPAs and one Approximate Structure. 

The approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces 

approximate sum output values from S0 to S7 using the logical OR operation in the final stage and 

carry output C7. This carry output C7 is used as carry input for the next stage of exact Kogge stone 

12-bit adder. The Kogge stone 12-bit adder structure, taking bits from 8 to 19 of inputs A and B, 

generates a sum output with Exact values from S8 to S19 and carry out of C19. This carry out C19 is 

taken as input for the next exact Sklansky 12-bit Adder. The Sklansky 12-bit adder structure, taking 

bits from 20 to 31 of inputs A and B, generates a sum output with exact values from S20 to S31 and 

carry out of Cout at the end.  

Fig. 4.11 Proposed Hybrid Approximate PPA10 
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CHAPTER 5 

PROPOSED HYBRID APPROXIMATE PPA 

5.1 INTRODUCTION 

The Proposed Hybrid approximate PPA, shown in Figure.5.1, is a 32-bit adder that is divided 

into Four phases. It comprises of three distinct Exact PPAs and one Approximate Structure. The 

approximate 8-bit structure, which takes bits from 0 to 7, of inputs A and B, produces approximate 

sum output values from S0 to S7 and carry output C7. This carry output C7 is used as carry input for 

the next stage of exact 8-bit adder. The Exact 8-bit adder topology1 structure, taking bits from 8 to 

15 of inputs A and B, generates a sum output with Exact values from S8 to S15 and carry out of C15. 

This carry out C15 is taken as input for the next exact 8-bit Adder. The exact 8-bit adder topology2 

structure, taking bits from 16 to 23 of inputs A and B, generates a sum output with exact values from 

S16 to S23 and carry out 23. The exact 8-bit adder topology 3 structure, taking bits from 24 to 31 of 

inputs A and B, generates a sum output with Exact values from S24 to S31 and carry out of Cout. 

 Fig. 5.1.1 Block diagram of Hybrid Approximate PPA 

5.2 PROPOSED HYBRID APPROXIMATE PPA11 

The Proposed Hybrid approximate PPA11, shown in Figure 5.2, is a 32-bit adder that is divided into 

Four phases. It comprises of three distinct Exact PPAs and one Approximate Structure. The 

approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces 

approximate sum output vales from S0 to S7 using the logical OR operation in the final stage and carry 

output C7. This carry output C7 is used as carry input for the next stage of exact Ladner-Fischer 8-bit 

adder. The Ladner-Fischer 8-bit adder structure, taking bits from 8 to 15 of inputs A and B, generates 

a sum output with Exact values from S8 to S15 and carry out of C15. This carry out C15 is taken as input 

for the next exact Knowles 8-bit Adder. The Knowles 8-bit adder structure, taking bits from 16 to 23 

of inputs A and B, generates a sum output with exact values from S16 to S23 and carry out 23. The 
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Sklansky 8-bit adder structure, taking bits from 24 to 31 of inputs A and B, generates a sum output 

with Exact values from S24 to S31 and carry out of Cout. 

Fig. 5.2 Proposed Hybrid Approximate PPA11 

 5.3 PROPOSED HYBRID APPROXIMATE PPA12 

Fig. 5.3 Proposed Hybrid Approximate PPA12 

 The Proposed Hybrid approximate PPA12, shown in Figure 5.3, is a 32-bit adder that is 

divided into Four phases. It comprises of three distinct Exact PPAs and one Approximate Structure. 

The approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces 

approximate sum output vales from S0 to S7 using the logical OR operation in the final stage and carry 

output C7. This carry output C7 is used as carry input for the next stage of exact Knowles 8-bit adder. 
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The Knowles 8-bit adder structure, taking bits from 8 to 15 of inputs A and B, generates a sum output 

with Exact values from S8 to S15 and carry out of C15. This carry out C15 is taken as input for the next 

exact Ladner-Fischer 8-bit Adder. The Ladner-Fischer 8-bit adder structure, taking bits from 16 to 23 

of inputs A and B, generates a sum output with exact values from S16 to S23 and carry out 23. The 

Sklansky 8-bit adder structure, taking bits from 24 to 31 of inputs A and B, generates a sum output 

with Exact values from S24 to S31 and carry out of Cout. 

5.4 PROPOSED HYBRID APPROXIMATE PPA13 

Fig. 5.4 Proposed Hybrid Approximate PPA13 

The Proposed Hybrid approximate PPA13, shown in Figure 5.4, is a 32-bit adder that is 

divided into Four phases. It comprises of three distinct Exact PPAs and one Approximate Structure. 

The approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces 

approximate sum output vales from S0 to S7 using the logical OR operation in the final stage and carry 

output C7. This carry output C7 is used as carry input for the next stage of exact Ladner-Fischer 8-bit 

adder. The Ladner-Fischer 8-bit adder structure, taking bits from 8 to 15 of inputs A and B, generates 

a sum output with Exact values from S8 to S15 and carry out of C15. This carry out C15 is taken as 

input for the next exact Sklansky 8-bit Adder. The Sklansky 8-bit adder structure, taking bits from 16 

to 23 of inputs A and B, generates a sum output with exact values from S16 to S23 and carry out 23. 

The Knowles 8-bit adder structure, taking bits from 24 to 31 of inputs A and B, generates a sum 

output with Exact values from S24 to S31 and carry out of Cout. 

5.5 PROPOSED HYBRID APPROXIMATE PPA14 
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The Proposed Hybrid approximate PPA14, shown in Figure 5.5, is a 32-bit adder that is 

divided into Four phases. It comprises of three distinct Exact PPAs and one Approximate Structure. 

The approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces 

approximate sum output vales from S0 to S7 using the logical OR operation in the final stage and carry 

output C7. This carry output C7 is used as carry input for the next stage of exact Sklansky 8-bit adder. 

The Sklansky 8-bit adder structure, taking bits from 8 to 15 of inputs A and B, generates a sum output 

with Exact values from S8 to S15 and carry out of C15. This carry out C15 is taken as input for the next 

exact Ladner Fishner 8-bit Adder. The Ladner Fishner 8-bit adder structure, taking bits from 16 to 23 

of inputs A and B, generates a sum output with exact values from S16 to S23 and carry out 23. The 

Knowles  8-bit adder structure, taking bits from 24 to 31 of inputs A and B, generates a sum output 

with Exact values from S24 to S31 and carry out of Cout. 

Fig. 5.5 Proposed Hybrid Approximate PPA14 

5.6 PROPOSED HYBRID APPROXIMATE PPA15 

The Proposed Hybrid approximate PPA15, shown in Figure 5.6, is a 32-bit adder that is 

divided into Four phases. It comprises of three distinct Exact PPAs and one Approximate Structure. 

The approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces 

approximate sum output vales from S0 to S7 using the logical OR operation in the final stage and carry 

output C7. This carry output C7 is used as carry input for the next stage of exact Sklansky 8-bit adder. 

The Sklansky 8-bit adder structure, taking bits from 8 to 15 of inputs A and B, generates a sum output 

with Exact values from S8 to S15 and carry out of C15. This carry out C15 is taken as input for the next 

exact Knowles 8-bit Adder. The Knowles 8-bit adder structure, taking bits from 16 to 23 of inputs A 

and B, generates a sum output with exact values from S16 to S23 and carry out 23. The Ladner-Fischer 
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8-bit adder structure, taking bits from 24 to 31 of inputs A and B, generates a sum output with Exact 

values from S24 to S31 and carry out of Cout. 

Fig. 5.6 Proposed Hybrid Approximate PPA15 

5.7 PROPOSED HYBRID APPROXIMATE PPA16 

Fig. 5.7 Proposed Hybrid Approximate PPA16 

 The Proposed Hybrid approximate PPA16, shown in Figure 5.7, is a 32-bit adder that is 

divided into Four phases. It comprises of three distinct Exact PPAs and one Approximate Structure. 

The approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces 

approximate sum output vales from S0 to S7 using the logical OR operation in the final stage and carry 
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output C7. This carry output C7 is used as carry input for the next stage of exact Ladner-Fischer 8-bit 

adder. The Ladner-Fischer 8-bit adder structure, taking bits from 8 to 15 of inputs A and B, generates 

a sum output with Exact values from S8 to S15 and carry out of C15. This carry out C15 is taken as 

input for the next exact Sklansky 8-bit Adder. The Sklansky 8-bit adder structure, taking bits from 16 

to 23 of inputs A and B, generates a sum output with exact values from S16 to S23 and carry out 23. 

The Knowles  8-bit adder structure, taking bits from 24 to 31 of inputs A and B, generates a sum 

output with Exact values from S24 to S31 and carry out of Cout. 

5.8 PROPOSED HYBRID APPROXIMATE PPA17 

Fig. 5.8 Proposed Hybrid Approximate PPA17 

The Proposed Hybrid approximate PPA17, shown in Figure 5.8, is a 32-bit adder that is 

divided into Four phases. It comprises of three distinct Exact PPAs and one Approximate Structure. 

The approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces 

approximate sum output vales from S0 to S7 using the logical OR operation in the final stage and carry 

output C7. This carry output C7 is used as carry input for the next stage of exact Han-Carlson 8-bit 

adder. The Han-Carlson 8-bit adder structure, taking bits from 8 to 15 of inputs A and B, generates a 

sum output with Exact values from S8 to S15 and carry out of C15. This carry out C15 is taken as input 

for the next exact Knowles 8-bit Adder. The Knowles 8-bit adder structure, taking bits from 16 to 23 

of inputs A and B, generates a sum output with exact values from S16 to S23 and carry out 23. The 

Sklansky 8-bit adder structure, taking bits from 24 to 31 of inputs A and B, generates a sum output 

with Exact values from S24 to S31 and carry out of Cout. 

5.9 PROPOSED HYBRID APPROXIMATE PPA18 
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The Proposed Hybrid approximate PPA18, shown in Figure-5.1, is a 32-bit adder that is 

divided into Four phases. It comprises of three distinct Exact PPAs and one Approximate Structure. 

The approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces 

approximate sum output vales from S0 to S7 using the logical OR operation in the final stage and carry 

output C7. This carry output C7 is used as carry input for the next stage of exact Kogge-Stone 8-bit 

adder. The Kogge-Stone 8-bit adder structure, taking bits from 8 to 15 of inputs A and B, generates 

a sum output with Exact values from S8 to S15 and carry out of C15. This carry out C15 is taken as 

input for the next exact Ladner Fishner 8-bit Adder. The Ladner Fishner 8-bit adder structure, taking 

bits from 16 to 23 of inputs A and B, generates a sum output with exact values from S16 to S23 and 

carry out 23. The Sklansky 8-bit adder structure, taking bits from 24 to 31 of inputs A and B, generates 

a sum output with Exact values from S24 to S31 and carry out of Cout. 

Fig. 5.9 Proposed Hybrid Approximate PPA18 

5.10 PROPOSED HYBRID APPROXIMATE PPA19 

The Proposed Hybrid approximate PPA19, shown in Figure 5.10, is a 32-bit adder that is 

divided into Four phases. It comprises of three distinct Exact PPAs and one Approximate Structure. 

The approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces 

approximate sum output vales from S0 to S7 using the logical OR operation in the final stage and carry 

output C7. This carry output C7 is used as carry input for the next stage of exact Brent-Kung 8-bit 

adder. The Brent-Kung 8-bit adder structure, taking bits from 8 to 15 of inputs A and B, generates a 

sum output with Exact values from S8 to S15 and carry out of C15. This carry out C15 is taken as input 

for the next exact Ladner-Fischer 8-bit Adder. The Ladner-Fischer 8-bit adder structure, taking bits 

from 16 to 23 of inputs A and B, generates a sum output with exact values from S16 to S23 and carry 
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out C23. The Sklansky 8-bit adder structure, taking bits from 24 to 31 of inputs A and B, generates a 

sum output with Exact values from S24 to S31 and carry out of Cout. 

 

Fig. 5.10 Proposed Hybrid Approximate PPA19 

5.11 PROPOSED HYBRID APPROXIMATE PPA20 

 

Fig. 5.11 Proposed Hybrid Approximate PPA20 

The Proposed Hybrid approximate PPA20, shown in Figure 5.11, is a 32-bit adder that is 

divided into Four phases. It comprises of three distinct Exact PPAs and one Approximate Structure. 

The approximate 8-bit structure, which takes bits from LSB 0 to 7, of inputs A and B, produces 
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approximate sum output vales from S0 to S7 using the logical OR operation in the final stage and carry 

output C7. This carry output C7 is used as carry input for the next stage of exact Han-Carlson 8-bit 

adder. The Han-Carlson 8-bit adder structure, taking bits from 8 to 15 of inputs A and B, generates a 

sum output with Exact values from S8 to S15 and carry out of C15. This carry out C15 is taken as input 

for the next exact Ladner-Fischer 8-bit Adder. The Ladner-Fischer 8-bit adder structure, taking bits 

from 16 to 23 of inputs A and B, generates a sum output with exact values from S16 to S23 and carry 

out C23. The Sklansky 8-bit adder structure, taking bits from 24 to 31 of inputs A and B, generates a 

sum output with Exact values from S24 to S31 and carry out of Cout. 
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CHAPTER 6 

IMAGE PROCESSING APPLICATIONS 

6.1 INTRODUTION  
               Image processing refers to the manipulation and analysis of digital images using 

computational algorithms. It encompasses a wide range of techniques aimed at enhancing, contrast, 

and extracting useful information from images. The Image Processing Applications are used Image 

enhancement and Image constrat using FPGA In Loop. 

1. IMAGE ENHANCEMENT:  Image enhancement refers to a set of techniques used to improve 

the visual quality of digital images. The goal of image enhancement is to make images more visually 

appealing, easier to interpret, or better suited for specific applications. Enhancement techniques aim 

to adjust various image attributes such as brightness, contrast, sharpness, and colour balance. 

 2. IMAGE CONTRAST:  Image contrast refers to the difference in brightness between the lightest 

and darkest parts of an image. A high-contrast image has a wide range of brightness levels, with 

distinct differences between bright and dark areas, while a low-contrast image has a narrower range 

of brightness levels, resulting in less pronounced differences between light and dark areas. 

6.1.1 IMAGE ENHANCEMENT PROCESSING APPLICATION USING FPGA IN LOOP 

 

Fig. 6.1.1 Image Enhancement Processing Application Using FPGA in the Loop 

The Figure 6.1.1 Image processing enhancement Application using FPGA in the Loop system, 

likely created using a software such as MATLAB Simulink. The flow starts with reading an image 

file ("enhance.jpeg"), which is then resized and processed through a series of blocks. These blocks 

include a transformation function U(:), converting the image to a frame, and a custom function block 

(F I L) that sums the input and performs other operations. The processed data is then passed through 

a reshape function (U,M,N) to convert it back to image format for visualization. Additionally, the 

original resized image is displayed using a separate Video Viewer block. The system seems to 
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perform an enhancement or filtering operation on the image and displays both the original and 

processed images for comparison. It is used for functional verification in real time system 

environment using FPGA in the Loop process for real time implementation on board. 

6.1.1.1 Experimental Results for Image Enhancement using FPGA In Loop 

                  

     Fig. 6.1.1.2 Input Image                      Fig. 6.1.1.3 Output Image             Fig. 6.1.1.4 FPGA Setup 

6.1.2 IMAGE CONTRAST PROCESSING APPLICATION USING FPGA IN THE LOOP 

 

 
Fig. 6.1.2 Image Constrat Processing Application Using FPGA in the Loop 

Image contrast is a critical parameter in image processing and computer vision that defines 

the difference in luminance or color that makes an object distinguishable from other objects and the 

background. High contrast images have a wide range of tones from black to white, making details 

and edges more visible and distinct. Conversely, low contrast images have a narrower range of tones, 

appearing more muted and less defined. Enhancing image contrast is essential for various 

applications, including medical imaging, remote sensing, photography, and surveillance, where 

clarity and detail are paramount. Techniques for contrast enhancement include histogram 

equalization, adaptive histogram equalization, contrast stretching, and using advanced algorithms 

such as CLAHE (Contrast Limited Adaptive Histogram Equalization).In a typical image processing 
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workflow, contrast adjustment might be one of the first steps performed after image acquisition. This 

can significantly improve the quality of the image, making subsequent steps like edge detection, 

segmentation, and object recognition more effective. The block diagrams provided likely represent a 

system designed to adjust and enhance image contrast, showcasing both the original and enhanced 

images for analysis and comparison. The Figure 6.1.2 Image Processing Constrat Application Using 

FPGA in the Loop illustrates an image processing workflow designed to enhance image contrast, 

starting with an image file labeled "resize.jpg." The image undergoes a transformation through a 

function U(:), then is converted to a frame for processing. The system incorporates constants (5, 3, 

and 2), which are combined using arithmetic operations facilitated by summation and custom function 

blocks (F I L). These operations adjust the image data to enhance contrast. The processed image data 

is then reshaped using the reshape(U,M,N) block to convert it back to an image format. The final 

enhanced image is displayed using a Video Viewer block, while the original resized image is also 

displayed separately for comparison. This workflow demonstrates a systematic approach to 

improving image contrast, making the details and edges more prominent, thereby facilitating better 

analysis and visualization 

6.1.2.1 Experimental Results for Image Contrast Using FPGA in the Loop 

 

       Fig. 6.1.2.2 Input Image                                                Fig. 6.1.2.3 Output Image 

 

 

 

 

 

        Fig. 6.1.2.4 Input Image                                              Fig. 6.1.2.5 Output Image 
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CHAPTER-7 

SIMULATION RESULTS 

7.1 INTRODUCTION 

The outcomes of the Proposed Approximate PPA, Proposed Hybrid Approximate PPA, and 

Proposed Hybrid Approximate PPA simulations for 32-bit are displayed in Tables 7.1.1, 7.1.2, and 

7.1.3, correspondingly. The implementation carried on the Artix-7 (XC7A35TICSG324-1L) FPGA 

board. The IEEE 1364-2005 Verilog HDL is used to model all the approximate adders.  All existing 

and proposed adders were simulated using Xilinx Vivado 2018.1 software tool. Parameters of no. of 

LUTs, delay, and power consumption are measured from simulation. In the experimentation using 

FPGA IN LOOP, IEEE 1801-2009/2018 unified power format is used. While implementing image 

processing with FPGA, IEEE 1588 clock synchronization is used. To connect FPGA board to Laptop, 

JTAG (IEEE 1149.1-1990) is used. 

 

7.2 SIMULATION AND SYNTHESIS RESULTS 

 7.2.1 Literature Review Results 

 The simulation results of the Exact SK, Existing AxSK, and Proposed AxSK Adders for 16 bits are 

shown in Figures 7.2.2,7.2.3, and 7.2.4, respectively. Based on those figures, the total values of the 

precise SK, AxSK, and suggested AxSK adders are 4146, 3F06, and 3F26, respectively. The two 

input numbers that are applied to all three adders are 8A12 and B734. The current and suggested 

AxSK error rates are 0,0.7053,0.6658. Table 7.2.1.4 presents a quantitative study of the area and 

latency in terms of LUTs for the 8-bit, 16-bit, and 32-bit AxSK adders that are already in use and 

those that are proposed. 

   

 

    

Fig. 7.2.1.1[1] Exact SK 16-Bit Adder Simulation 

 

  

 

Fig. 7.2.1.2 [1] AxSK 16-Bit Adder Simulation 
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      Fig. 7.2.1.3 [1] Proposed AxSK 16-Bit Adder simulation 

Table 7.2.1.4 Area and Delay Analysis of the Proposed and Existing AxSK Adder 

 

 

 

 

 

The simulation results are shown in Figures 7.2.1.5,7.1.2.6, and 7.2.1.7 for the 32-bit versions 

of the Exact LF, Existing AxLF, and Proposed AxLF Adders. It is evident from those figures that 

88716723 and B781ADDA are the two input numbers applied to all three adders, and that 3FF314FD, 

3FF080FD, and 3FF0CAFD are the corresponding total values for the Exact LF, Existing AxLF, and 

Proposed AxLF Adders. The error rates of the present AxLF are 0.003147720, while the projected 

AxLF is 0.002794784. Table 7.2.1.8 presents a quantitative analysis of latency and area in terms of 

LUTs for the proposed and existing AxLF adders of 8-bit, 16-bit, and 32-bit. Table 4 illustrates that 

the AxLF 32-bit adder that is recommended needs less area and time. 

 

 

 

 

 

Fig. 7.2.1.5 Exact 32-bit LF Adder simulation 

 

 

 

 

       Fig. 7.2.1.6 Existing 32-bit AxLF Adder simulation 

 

No. 
of 

bits 

Exact 
SK 

Adder    
LUT 
[1] 

Exact SK 
Adder 

Delay (ns) 
[1] 

AxSK 
Adder 
LUT 
[1] 

AxSK 
Adder 
Delay 
(ns)[1] 

Proposed 
AxSKAdder 

LUT 
[1] 

Proposed 
AxSK 
Adder 

Delay(ns) 
[1] 

8 1386 9.234 1381 8.018 1381 8.018 
16 1460 8.967 1445 7.051 1445 7.051 
32 1668 9.018 1662 7.775 1662 7.775 
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                               Fig. 7.2.1.7 Proposed32-bit AxLF Adder simulation 

Table 7.2.1.8 Area and Time Analysis of the Existing and Proposed AxLF adders 

 

Results are obtained using Xilinx 14.2 tool and Cadence RTL Compiler. Path delay (ns) is calculated 

automatically using synthesis process in Xilinx Tool, Area and Power are Calculated using Cadence 

RTL Compiler Tool. 

Table 7.2.1.9 Comparison of Knowles and Modified Knowles adder 

Parallel prefix adders Area  

[32] 

Power(nw) 

[32] 

Path delay(ns) 

[32] 

16-bit Knowles adder 414.893 9993.106 14.452 

16-bit Modified 

Knowles adder 

340.805 8886.989 13.369 

 

 

 

 

 

                Fig. 7.2.1.10 [31] Simulation and synthesis of Han-Carlson adder  

Bits  exact LF 
adder    
LUT 
[1] 

exact LF 
adder 

Delay (ns) 
[1] 

AxLF Adder 
LUT 
[1] 

AxLF Adder 
Delay (ns) 

[1] 

Proposed 
AxLF 
adder 

LUT[1] 

Proposed 
AxLF adder 
Delay(ns) 

[1] 
8 1386 9.981 1383 8.837 1383 8.837 
16 1454 9.463 1451 7.851 1451 7.851 
32 1679 9.650 1668 8.005 1668 8.005 
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Verilog descriptions of the proposed variable latency speculative adders, and of their non-speculative 

counterpart. It is not easy to compare performances (in terms of power, speed, and area) of different 

designs, since they strongly depend on timing constraint used during synthesis. The adders we 

described in following discussions are CLA (Carry Look Ahead Adder) and HCA (Han Carlson 

Adder) 

                   Table 7.2.1.11 Comparison of CLA Kogge stone and Han Carlson 

 CLA [31] KS [31] HC [31] 

Delay(ns) 22.95 21.82 20.82 

No of Slices 1% 1% 1% 

No of 4 input LUTs 1% 1% 1% 

No of I/O 23% 21% 21% 

 

Simulation results of Exact BK, AxBK, and Proposed AxBK Adders for 16 bits are shown in Figures 

Fig.7.2.1.12, Fig.7.2.1.13, and Fig.7.2.1.14 respectively. From those figures, we can observe that the 

two input numbers applied are 5AC3 and E8F9 input to all three adders, and the sum values of Exact 

BK, AxBK, and Proposed AxBK Adders are 43BC,43B8, and 43BA respectively. The error rates for 

existing and proposed AxBK are 0,0.0843,0.0434. Table 2 gives the quantitative analysis of delay 

and area in terms of LUTs of the existing and Proposed AxBK Adders of 8-bit, 16-bit, and 32-bit. 

From Table 7.2.1.15, it can be observed that the proposed AxBK 32-bit adder takes less area and less 

delay 

 

 

 

                                   

   Fig. 7.2.1.12 Simulation Result of Exact BK 16-Bit Adder 
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Fig. 7.2.1.13 Simulation Result of AxBK 16-Bit Adder 

 

 

 

 

 

                                     Fig. 7.2.1.14 Simulation Result of Proposed AxBK 16-Bit Adder 

Table 7.2.1.15 Area and Delay Analysis of the Proposed and Existing AxBK Adder 

  

Simulation results of Exact KS, AxKS and Proposed AxKS Adders for 32 bits are shown in Figures 

Fig.7.2.1.16, Fig.7.2.1.17 and Fig.7.2.1.18 respectively. From those figures we can observe that the 

two input numbers applied are 8AB87B67H and B788ABDAH input to the all three adders and the 

sum values of Exact KS, AxKS and Proposed AxKS Adders are 42412741H, 3D308639H and 

3D30D6BDH respectively. The error rates for existing and proposed AxKS are 

0,1.571725781914016,1.571344539474199. Table 7.2.1.19 gives the quantitative ananlysis of delay 

and area in terms of LUTs of the existing and Proposed AxKS Adders of 8-bit, 16 bit and 32 bit. 

From the table 2, it can be observed that proposed AxKS 32-bit adder takes less area and less delay. 

 

 

 

Fig. 7.2.1.16 Simulation result of 32-bit Exact KS Adder 

No. of 
bits 

Exact BK 
Adder    

LUT [1] 

Exact BK 
Adder Delay 

(ns) [1] 

AxBK 
Adder 

LUT [1] 

AxBK 
Adder 
Delay 
(ns)[1] 

Proposed 
AxBKAdder 

LUT [1] 

Proposed 
AxBK 
Adder 

Delay(ns)[1] 
8 1387 8.769 1388 7.861 1385 8.625 

16 1460 9.583 1455 8.494 1453 8.629 
32 1696 8.204 1654 7.314 1651 7.201 
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Fig. 7.2.1.17 Simulation result of 32-bit AxKS Adder 

 

 

Fig. 7.2.1.18 Simulation result of 32-bit Proposed AxKS Adder 

Table 7.2.1.19 Analysis of Area and Delay of existing and Proposed AxKS Adder 

 

 

7.2.2 Xilinx Vivado Simulation and Synthesis Results 

Table 7.2.2.1 Performance Analysis of Proposed Approximate PPA 

S. No Types of Proposed Approximate PPA 

(24+8) bits 

LUT Delay (ns) 

1 Proposed AxBK PPA 1663 7.532 

2 Proposed AxKS PPA 1676 6.975 

3 Proposed AxLF PPA 1664 7.538 

4 Proposed AxSK PPA 1658 8.236 

5 Proposed AxKW PPA 1679 7.983 

6 Proposed AxHC PPA 1667 7.014 

 

No. of 
bits 

Exact KS 
Adder    

LUT [2] 

Exact KS 
Adder [2]    
Delay (ns) 

AxKS 
Adder 

LUT [2] 

AxKS 
Adder 
Delay 

(ns) [ 2] 

Proposed 
AxKS 
Adder 

LUT [2] 

Proposed 
AxKS Adder 
Delay(ns)[2] 

8 1389 8.095 1386 8.024 1386 8.022 
16 1525 9.482 1453 9.067 1453 9.066 
32 1659 17.460 1654 7.086 1654 7.084 
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Table 7.2.2.1 presents the performance analysis of various types of 32-bit Proposed 

Approximate PPA. Among them, the Kogge Stone adder demonstrates superior speed and reduced 

delay compared to the others. Additionally, the Brent Kung PPA exhibits a smaller area when 

compared to other types of Proposed Approximate PPA. 

Table 7.2.2.2 Performance Analysis of Proposed Hybrid Approximate PPA 

S.NO Types of Proposed Hybrid Approximate PPA 

(12+12+8) bits 

LUT Delay(ns) 

1 Proposed Hybrid Approximate PPA1 1651 6.748 

2 Proposed Hybrid Approximate PPA2 1658 8.021 

3 Proposed Hybrid Approximate PPA3 1668 8.506 

4 Proposed Hybrid Approximate PPA4 1679 8.559 

5 Proposed Hybrid Approximate PPA5 1667 6.998 

6 Proposed Hybrid Approximate PPA6 1662 8.260 

7 Proposed Hybrid Approximate PPA7 1661 6.985 

8 Proposed Hybrid Approximate PPA8 1663 7.294 

9         Proposed Hybrid Approximate PPA9 1672 7.953 

10  Proposed Hybrid Approximate PPA10 1662 7.195 

 

The Performance analysis of Proposed Hybrid Approximate PPA study on various Hybrid 

Adders is presented in table 7.2.2.2 According to the table, the most prevalent type is Proposed Hybrid 

Approximate PPA1, which has a LUT size of 1651 and a delay of 6.748ns. This type exhibits lower 

delay and area compared to other Proposed Hybrid Approximate PPA types, while delivering high-

speed performance with a lower error rate.  

The table 7.2.2.3 presents the Performance analysis of Proposed Hybrid Approximate PPA 

study on various Hybrid Adders. Among them, the most common types are Proposed Hybrid 

Approximate PPA11, Proposed Hybrid Approximate PPA15, and Proposed Hybrid Approximate 

PPA16 with a LUT size of 1650. However, there is a slight change in delay among these three types, 

with the first hybrid adder having slightly lower delay compared to the other two. This particular type 

demonstrates lower delay and area in comparison to other Proposed Hybrid Approximate PPA types, 

while maintaining high-speed performance with a lower error rate. 
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Table 7.2.2.3 Performance Analysis of Proposed Hybrid Approximate PPA 

 

 

 

 

 

 

 

 

 

 

 

 

7.3 IMAGE PROCESSING FOR LITERATURE REVIEW RESULTS  

Output results of Exact BK, AxBK, and Proposed AxBK Adders for 16 bits are shown in 

Figures Fig.7.3.3,7.3.4,7.3.5,[1] respectively. From those figures, we can observe that the two input 

images applied are shown in Fig.7.3.1 and Fig.7.3.2 input to all three adders, and the PSNR values of 

Exact BK, AxBK, and Proposed AxBK Adders are calculated respectively in Table 7.3.6.  

 

Fig. 7.3.1[1] Input Image1                      Fig. 7.3.2[1] Input Image2           Fig.7.3.3[1] Exact 16-bit BKPPA  

               

 

 

S.NO Types of Proposed Hybrid Approximate PPA 

(8+8+8+8) bits 

LUT Delay(ns) 

1 Proposed Hybrid Approximate PPA11 1650 6.075 

2 Proposed Hybrid Approximate PPA12 1654 7.483 

3 Proposed Hybrid Approximate PPA13 1653 8.352 

4 Proposed Hybrid Approximate PPA14 1653 8.152 

5 Proposed Hybrid Approximate PPA15 1650 7.288 

6 Proposed Hybrid Approximate PPA16 1650 7.018 

7 Proposed Hybrid Approximate PPA17 1651 7.442 

8 Proposed Hybrid Approximate PPA18 1659 7.467 

9 Proposed Hybrid Approximate PPA19 1659 7.968 

10 Proposed Hybrid Approximate PPA20 1657 7.234 
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Fig.7.3.4[1] Existing 16-bit AxBK PPA                         Fig.7.3.5[1] Proposed 16-bit AxBKPPA  

 

Table 7.3.6 Calculation of PSNR (dB) for BK PPA 

 

 

 

 

 

 

Output results of Exact KS, AxKS, and Proposed AxKS Adders for 32 bits are shown in Figures 

Fig.7.3.7,7.3.8,7.3.9,[2] respectively. From those figures, we can observe that the two input images 

applied are shown in Fig.7.3.1 and Fig.7.3.2 input to all three adders, and the PSNR values of Exact 

KS, AxKS, and Proposed AxKS Adders are calculated respectively in Table 7.3.10. 

Table 7.3.10 Calculation of PSNR (dB) for KS PPA 

 

 

 

 

 

 

 

No of bits Exact BK Adder 

[1] 

AxBK Adder 

[1] 

Proposed AxBK Adder 

[1] 

8 46.459701 27.987721 27.908850 

16 62.230587 53.218859 53.217293 

32 190.974765 103.570406 103.570350 

No of bits Exact KS Adder 

[2] 

AxKS Adder 

[2] 

Proposed AxKS Adder 

[2] 

8 50.532650 28.817192 28.831202 

16 63.333202 53.027539 53.023366 

32 128.681882 101.245601 101.244375 
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Fig.7.3.7  Exact 32-bit KSPPA        Fig.7.3.8 Ax 32-bit KSPPA    Fig.7.3.9 Proposed 32-bit KSPPA    

Output results of Exact LF, AxLF, and Proposed AxLF Adders for 32 bits are shown in Figures 

Fig.7.3.11,7.3.12,7.3.13,[1] respectively. From those figures, we can observe that the two input 

images applied are shown in Fig.7.3.1 and Fig.7.3.2 input to all three adders, and the PSNR values of 

Exact BK, AxBK, and Proposed AxBK Adders are calculated respectively in Table 7.3.14. 

Fig.7.3.11  Exact 32-bit LFPPA     Fig.7.3.12 Ax32-bit LFPPA    Fig.7.3.13 Proposed 32-bit LFPPA    

Table 7.3.14. Calculation of PSNR (dB) for LF PPA 

 

 

 

 

 

 

Output results of Exact SK, AxSK, and Proposed AxSK Adders for 16 bits are shown in Figures 

Fig.7.3.15,7.3.16,7.3.17,[1] respectively. From those figures, we can observe that the two input 

images applied are shown in Fig.7.3.1 and Fig.7.3.2 input to all three adders, and the PSNR values of 

Exact SK, AxSK, and Proposed AxSK Adders are calculated respectively in Table 7.3.18. 

No of 
Bits 

Exact LF adder 

[1] 

Existing AxLF adder 

[1] 

Proposed AxLF adder 

[1] 

8 50.63385 28.9066 26.888650 

16 72.998084 55.712602 55.704465 

32 190.9747 102.657723 102.657714 
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Fig. 7.3.15 Exact 16-bit SKPPA Fig. 7.3.16 AxSK 16-bit PPA       Fig. 7.3.17 Proposed 16-bitSKPPA  

 

                                       Table 7.3.18 Calculation of PSNR (dB) for SK PPA 

 

 

 

 

 

 

7.4 IMAGE PROCESSING RESULTS USING SYSTEM GENERATOR 

System Generator is a DSP design tool from Xilinx that enables the use of the MathWorks model-

based Simulink design environment for FPGA design. The design tools facilitate the design processes 

by obscuring the technical knowledge necessary for FPGA a Register Transfer Level (RTL) design. 

Instead, a design is modelled using the intuitive visual environment within Simulink that uses several 

specific block sets accelerate the development. Additionally, System Generator can perform the 

FPGA implementation steps: synthesis, mapping, and place and route to generate the FPGA 

executable file 

The image processing method need to be implemented in hardware in order to meet the real time 

applications. FPGA implementation can be performed using prototyping environment using 

Matlab/Simulink and Xilinx System Generator tool. The design flow of hardware implementation of 

image processing using XSG is given in Fig.7.4.1. Image source and image viewer are Simulink block 

sets by using these blocks image can give as input and output image can be viewed on image viewer 

block set. Image pre-processing and image post-processing unite are common for all the image 

processing applications which are designed using Simulink blocksets. 

No of bits Exact SK Adder 

[1] 

Existing AxSK Adder 

[1] 

Proposed AxSK Adder 

[1] 

8 48.469801 26.987721 26.907850 

16 111.41520 55.712602 55.704465 

32 188.964765 101.561406 101.560350 
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Fig. 7.4.1 Design flow of hardware implementation of image processing 

A. Image Pre-Processing Unit Image preprocessing in Matlab helps in providing input to FPGA as 

specific test vector array which is suitable for FPGA Bitstream compilation using system generator. 

 Resize: Set Input dimensions for an image and interpolation i.e. bicubic it helps in preserving fine 

detail in an image. 

  Convert 2-D to 1-D: Converts the image into single array of pixels.  

  Frame conversion and buffer: It helps in setting sampling mode and buffering of data. The model- 

based design used for image pre-processing is shown in Fig. 7.4.2 The blocks utilized here are 

discussed. Input images which could be color or grayscale are provided as input to the File block. 

 

 

 

 

 

Fig. 7.4.2 Image Pre-processing unit 

B. Image post processing helps recreating image from 1D array. Post-processing uses (Fig.7.4.2.1) 

  Data type conversion: It converts image signal to unsigned integer format.  

 Buffer : Converts scalar samples to frame output at lower sampling rate.  

 Convert 1D to 2D: Convert 1D image signal to 2D image matrix.  

 Video viewer: It is used to display the output image back on the monitor 
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Fig. 7.4.2.1 Image Post-processing unit 

 

 

 

 

 

 

  Fig. 7.4.3 Input Image 1                     Fig. 7.4.4 Input Image 2           Fig.7.4.5 Proposed AxBKPPA 

               

 

 

 

 

 

Fig. 7.4.6 Proposed AxKSPPA     Fig. 7.4.7 Proposed AxSKPPA      Fig. 7.4.8 Proposed AxLFPPA 

 

             

   

 

 

 

Fig. 7.4.9 Proposed AxKWPPA     Fig.7.4.10 Proposed AxHCPPA   Fig.7.4.11 Proposed HAxPPA1     
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Fig.7.4.12 Proposed HAxPPA2     Fig.7.4.13 Proposed HAxPPA3    Fig.7.4.14 Proposed HAxPPA4     

 

 

 

 

  

  Fig.7.4.15 Proposed HAxPPA5     Fig.7.4.16 Proposed HAxPPA6  Fig.7.4.17 Proposed HAxPPA7    

 

  

                                                    

 

 

 

  Fig.7.4.18 Proposed HAxPPA8   Fig.7.4.19 Proposed HAxPPA9  Fig.7.4.20 Proposed HAxPPA10     

 

         

                                             

            

                                      

                                                
Fig.7.4.21 Proposed HAxPPA11   Fig.7.4.22 Proposed HAxPPA12    Fig.7.4.23 Proposed HAxPPA13        
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Fig.7.4.24 Proposed HAxPPA14   Fig.7.4.25 Proposed HAxPPA15     Fig.7.4.26 Proposed HAxPPA16 

 

 

 

     

 

 

Fig.7.4.27 Proposed HAxPPA17   Fig.7.4.28 Proposed HAxPPA18    Fig.7.4.29 Proposed HAxPPA19 

  

 

 

 

 

 

Fig.7.4.30 Proposed HAxPPA20 

7.4.31 Calculation of PSNR Values for Proposed Approximate PPA using System Generator 

Peak Signal-to-Noise Ratio (PSNR) is a crucial metric used to evaluate the quality of reconstruction 

in image and video compression. It quantifies the difference between an original image and a 

compressed or processed version, providing a measure of the fidelity and accuracy of the compression 

algorithm. Typically expressed in decibels (dB), a higher PSNR value indicates a closer resemblance 

to the original image, implying better quality. PSNR is widely used due to its simplicity and the 

intuitive understanding it offers: higher PSNR equates to lower error and, therefore, higher visual 
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quality. However, it should be noted that PSNR may not always correlate perfectly with perceived 

visual quality, as it is primarily a mathematical measure rather than a perceptual one. 

Table 7.4.31 Calculation of Proposed Approximate PPA PSNR Values 

S. No Types of Proposed Approximate PPA 

(24+8) bits 

PSNR (dB) 

1 Proposed Approximate BK PPA 107.060868 

2 Proposed Approximate KS PPA 107.836712 

3 Proposed Approximate LF PPA 107.060868 

4 Proposed Approximate SK PPA 107.182541 

5 Proposed Approximate KW PPA 107.263412 

6 Proposed Approximate HC PPA 107.468125 

 

Table 7.5.1 is Based on the PSNR values for different types of Proposed Approximate Parallel Prefix 

Adders (PPA), it is evident that all the evaluated PPAs exhibit excellent performance in image 

reconstruction, with PSNR values exceeding 107 dB. Among them, the Proposed Approximate KS 

PPA stands out with the highest PSNR of 107.836712 dB, indicating superior quality and minimal 

error. The Proposed Approximate HC PPA follows closely, also demonstrating high reconstruction 

quality. Proposed Approximate KW and SK PPAs show comparable performance with PSNR values 

of 107.263412 dB and 107.182541 dB, respectively, while Proposed Approximate BK and LF PPAs, 

both with a PSNR of 107.060868 dB, slightly lag behind. Despite these differences, all PPAs maintain 

a high level of accuracy, reflecting their effectiveness in preserving image fidelity during 

compression. 

7.4.32 Calculation of PSNR for Proposed Hybrid Approximate PPA 

Table 7.4.32 Shows the PSNR values for various types of Proposed hybrid approximate PPAs reveal 

significant insights into their performance in image reconstruction. Among the evaluated hybrids, 

"Proposed Hybrid Approximate PPA4" stands out with the highest PSNR of 108.430561 dB, closely 

followed by "Proposed Hybrid Approximate PPA10" at 108.391740 dB, indicating superior image 

quality and minimal error. "Proposed Hybrid Approximate PPA2" and "Proposed Hybrid 

Approximate PPA8" also demonstrate high performance with PSNR values of 107.960343 dB and 

107.803920 dB, respectively. The remaining PPAs, although slightly lower in PSNR, still maintain 

excellent reconstruction quality, with values all above 106.94 dB. Overall, the Proposed hybrid 
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designs effectively enhance image fidelity, with certain combinations like Proposed HAxPPA4 and 

Proposed HAxPPA10 providing particularly high accuracy. 

Table 7.4.32 Calculation of PSNR for Proposed Hybrid Approximate PPA 

S.NO Types of Proposed Hybrid Approximate PPA 

(12+12+8) bits 

PSNR (dB) 

1 Proposed Hybrid Approximate PPA1 107.456310 

2 Proposed Hybrid Approximate PPA2 107.960343 

3 Proposed Hybrid Approximate PPA3 107.458650 

4 Proposed Hybrid Approximate PPA4 108.430561 

5 Proposed Hybrid Approximate PPA5 107.242392 

6 Proposed Hybrid Approximate PPA6 106.948555 

7 Proposed Hybrid Approximate PPA7 107.216459 

8 Proposed Hybrid Approximate PPA8 107.803920 

9 Proposed Hybrid Approximate PPA9 107.215912 

10 Proposed Hybrid Approximate PPA10 108.391740 

 

7.4.33 Calculation of PSNR for Proposed Hybrid Approximate PPA using System Generator 

The PSNR values for various types of Proposed Hybrid Approximate PPAs, based on the given data, 

provide insight into their effectiveness in image reconstruction. "Proposed Hybrid Approximate 

PPA12" achieves the highest PSNR of 109.417188 dB, indicating the best image quality and lowest 

error among the tested combinations. This is followed by "Proposed Hybrid Approximate PPA17" 

and "Proposed Hybrid Approximate PPA20" with PSNR values of 108.455380 dB and 108.412348 

dB, respectively, also demonstrating excellent performance. The majority of other hybrids, including 

"Proposed Hybrid Approximate PPA11", "Proposed Hybrid Approximate PPA14", and "Proposed 

Hybrid Approximate PPA16", show strong performance with PSNR values around 107 dB, ensuring 

high-quality image reconstruction. However, "Proposed Hybrid Approximate PPA13" presents a 

notably lower PSNR of 102.972126 dB, indicating poorer image quality.  

 

 



50 
 

Table 7.4.33 Calculation of PSNR for Proposed Hybrid Approximate PPA 

S.NO Types of Proposed Hybrid Approximate PPA 

(8+8+8+8) bits 

PSNR (dB) 

1 Proposed Hybrid Approximate PPA11 107.089177 

2 Proposed Hybrid Approximate PPA12 109.417188 

3 Proposed Hybrid Approximate PPA13 102.972126 

4 Proposed Hybrid Approximate PPA14 107.089177 

5 Proposed Hybrid Approximate PPA15 106.392073 

6 Proposed Hybrid Approximate PPA16 107.067981 

7 Proposed Hybrid Approximate PPA17 108.455380 

8 Proposed Hybrid Approximate PPA18 107.004355 

9 Proposed Hybrid Approximate PPA19 107.117702 

10 Proposed Hybrid Approximate PPA20 108.412348 
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CHAPTER-8 

VERIFICATION RESULTS 

8.1 INTRODUCTION 

Field Programmable Gate Arrays (FPGAs) are powerful hardware devices widely used for 

implementing real-time, high-performance image processing tasks. Their ability to handle parallel 

processing and high data throughput makes them ideal for image processing applications where speed 

and efficiency are critical. Here, we will introduce the concept of using FPGAs in a loop for image 

processing, detailing the workflow and verification process shown in Fig. 8.1 Image Processing Using 

FPGA In Loop. The implementation carried on the Artix-7 (XC7A35TICSG324-1L) FPGA board. 

In the experimentation using FPGA IN LOOP, IEEE 1801-2009/2018 unified power format is used. 

While implementing image processing with FPGA, IEEE 1588 clock synchronization is used. To 

connect FPGA board to Laptop, JTAG (IEEE 1149.1-1990) is used. 

 

8.2 IMAGE PROCESSING USING FPGA IN LOOP 

                                 

Fig. 8.2 Image Processing Using FPGA In Loop 

The image you sent depicts a block diagram of a system for processing images. but here’s a general 

breakdown of the steps involved: 

1. Image Input: The system takes an image as input, which is denoted by a block labeled 

“[text in the image not shown] Image.” This image can be in various formats, such as JPEG, 

PNG, or BMP. 

2. Data Type Conversion: The image data is then passed through a block labeled “Data Type 

Conversion.” This block likely converts the image data from its original format into a format 

that the system can process. For instance, the image data might be converted from a high-level 

format like JPEG into a simpler binary format. 
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3. Image Resizing: Next, the image data goes through a block labeled “Image Resize.” This 

block may resize the image to a specific resolution. Resizing an image involves changing the 

number of pixels in the image. This can be done for various reasons, such as to reduce the file 

size of the image or to match the image to the size requirements of the system. 

4. Single/reshape (MN): The block labelled “Single/reshape (MN)” likely performs two 

operations on the image data. The “Single” operation might convert the data type of the image 

from double-precision floating-point numbers to single-precision floating-point numbers. 

Single-precision numbers use less memory than double-precision numbers, but they also have 

a lower precision (meaning they can represent a smaller range of values). The “reshape (MN)” 

operation likely reshapes the image data into a two-dimensional matrix with M rows and N 

columns. This is a common way to store and process image data. 

 

1. Video Viewer: The output from the previous block is then fed into a block labeled “Video 

Viewer.” It’s important to note that the system is processing an image, not a video. The “Video 

Viewer” block might be a generic term for a block that can display the processed data. In this 

case, it would be displaying the image data. 

2. Data Type Conversion: The system also has another block labeled “Data Type 

Conversion.” The purpose of this block is likely similar to the first “Data Type Conversion” 

block. It might convert the processed image data back into its original format or into a different 

format for further processing. 

3. Output: The final block in the system is labeled “Out.” This block represents the output of 

the system, which could be the processed image data. 

Overall, the block diagram depicts a system that can process images in various ways, including 

resizing the image, converting the data type, and potentially performing other operations on the image 

data. 

 

Fig. 8.2.1 Input Image 1                         Fig. 8.2.2 Input Image 2                  Fig. 8.2.3 Output Image 
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CHAPTER 9 

CONCLUSION AND FUTURE SCOPE 

9.1 CONCLUSION 

Various approximation adders have been examined, simulated, and analyzed in this study. The 

experimental findings were then implemented. Within this project, novel approximate parallel prefix 

adders were devised and implemented to attain decreased area and delay, along with high PSNR 

values. This addition method is exceptionally swift and can be executed for large numbers in 

significantly less time, yielding superior outcomes. The proposed Ax parallel Prefix adders exhibit 

potential applications in digital signal processing, ALU units, and Image Processing. In this project, 

image enhancement and image contrast applications are implemented. 

 

9.2 FUTURE SCOPE 

The focus is on further research on hybrid PPAs, architecture modifications, and specific image 

processing applications and implementation. 
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